PNS SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

Branch: Electrical Engg.	Semester: 5 TH	Name of the Lecturer: Jayakanta Mallick					
Subject: EC-II	Classes Alloted in a Week: 6	Duration of Semester: 01.07.2024 - 08.11.2024					
Week	Class Day	Theory / Practical Topic					
	1	ALTERNATOR: Types of alternator and their constructional features					
	2	Basic working principle of alternator					
1st	3	The relation between speed and frequency					
	4	Terminology in armature winding and expressions for winding factors (Pitch factor, Distribution factor)					
	5	Explain harmonics, its causes and impact on winding factor					
	6	E.M.F equation of alternator. (Solve numerical problems).					
	1	Explain Armature reaction and its effect on emf at different power factor of load					
	2	The vector diagram of loaded alternator. (Solve numerical problems)					
	3	Testing of alternator (Solve numerical problems): Open circuit test.					
2nd	4	Testing of alternator (Solve numerical problems):short circuit test					
Ziid	5	Determination of voltage regulation of Alternator by direct loading method(Solve numerical problems)					
	6	Determination of voltage regulation of Alternator by synchronous impedance method. (Solve numerical problems)					
	1	Parallel operation of alternator using synchro-scope and dark & bright lamp method.					
	2	Explain distribution of load by parallel connected alternators					
	3	SYNCHRONOUS MOTOR: Constructional feature of Synchronous Motor.					
3rd	4	Principles of operation, concept of load angle					
	5	Derive torque, power developed					
	6	Effect of varying load with constant excitation and Effect of varying excitation with constant load.					
	1	Power angle characteristics of cylindrical rotor motor					
	2	Explain effect of excitation on Armature current and power factor and Hunting in Synchronous Motor.					
4+h	3	Function of Damper Bars in synchronous motor and generator					
4th	4	Describe method of starting of Synchronous motor and State application of synchronous motor.					
	5	THREE PHASE INDUCTION MOTOR: Production of rotating magnetic field					
	6	Constructional feature of Squirrel cage and Slip ring induction motors.					
5th	1	Working principles of operation of 3-phase Induction motor.					
	2	Define slip speed, slip and establish the relation of slip with rotor quantities.					
	3	Derive expression for torque during starting and running conditions and derive conditions for maximum torque. (solve numerical problems)					
	4	Torque-slip characteristics					
	5	Derive relation between full load torque and starting torque etc. (solve numerical problems)					
	6	Establish the relations between Rotor Copper loss, Rotor output and Gross Torque and relationship of slip with rotor copper loss. (solve numerical problems)					

	1	Methods of starting and different types of starters used for three phase Induction motor				
	2	Explain speed control by Voltage Control, Rotor resistance control, Pole changing, frequency control methods.				
6th	3	Plugging as applicable to three phase induction motor				
	4	Describe different types of motor enclosures				
	5	Explain principle of Induction Generator and state its applications.				
	6	Solve numerical problems				
	1	SINGLE PHASE INDUCTION MOTOR: Explain Ferrari's principle.				
	2	Explain double revolving field theory and Cross-field theory to analyze starting torque of 1-phase induction motor				
	3	Explain Working principle, Torque speed characteristics, performance characteristics and application of Split phase motor.				
7th	4	Explain Working principle, Torque speed characteristics, performance characteristics and application of Capacitor Start motor				
	5	Explain Working principle, Torque speed characteristics, performance characteristics and application of Capacitor start, capacitor run motor.				
	6	Explain Working principle, Torque speed characteristics, performance characteristics and application of Permanent capacitor type motor.				
	1	Explain Working principle, Torque speed characteristics, performance characteristics and application of Shaded pole motor.				
	2	Explain the method to change the direction of rotation of above motors				
8th	3	COMMUTATOR MOTORS: Construction, working principle				
	4	Running characteristic and application of single phase series motor				
	5	Construction, working principle and application of Universal motors				
	6	Working principle of Repulsion start Motor,				
	1	Working principle of Repulsion start Induction run motor				
	2	Working principles of Repulsion Induction motor.				
9th	3	SPECIAL ELECTRICAL MACHINE: Principle of Stepper motor.				
9111	4	Classification of Stepper motor				
	5	Principle of variable reluctant stepper motor				
	6	Principle of Permanent magnet stepper motor.				
	1	Principle of hybrid stepper motor & Applications of Stepper motor				
	2	THREE PHASE TRANSFORMERS: Explain Grouping of winding, Advantages.				
10th -	3	Explain parallel operation of the three phase transformers.				
10111	4	Explain tap changer (On load tap changing)				
	5	Explain tap changer (Off load tap changing)				
	6	Maintenance Schedule of Power Transformers.				

Signature of the Lecturer