	DEPARTM	ENT OF ELECTRONICS & TELECOMMUNICATION ENGINEERING		
LESSON PLAN				
BRANCH :	SEMESTER :	NAME OF THE TEACHING FACULTY :		
ETC ENGG.	3RD	MR. ADITYA NARAYAN JENA		
SUBJECT : DIGITAL ELECTRONICS	NO. OF DAYS PER WEEK CLASS ALLOTTED : 05	SEMESTER FROM DATE: 01.07.2024 TO 08.11.2024		
WEEK	CLASSDAY	THEORY TOPICS		
	1 st	1.BASICS OF DIGITAL ELECTRONICS		
		NUMBER SYSTEM-BINARY, OCTAL, DECIMAL, HEXADECIMAL NUMBER SYSTEM		
1 st	2 nd	CONVERSION OF BINARY/OCTAL/HEXADECIMAL NUMBER SYSTEM INTO DECIMAL NUMBER SYSTEM		
	3 rd	CONVERSION OF DECIMAL NUMBER SYSTEM INTO BINARY/OCTAL/HEXADECIMAL NUMBER SYSTEM		
	4 th	CONVERSION OF BINARY TO OCTAL, OCTAL TO BINARY, BINARY TO HEXADECIMAL,HEXADECIMAL NUMBER SYSTEM INTO BINARY NUMBER SYSTEM OCTAL TO HEXADECIMAL, HEXADECIMAL TO OCTAL NUMBER SYSTEM		
	5 th	BINARY ARITHMATIC (ADDITION, SUBTRACTION, MULTIPLICATION, DIVISION)		
	1 st	1'S COMPLEMENT,2'S COMPLEMENT AND SUBTRACTION OF BINARY NUMBER USIN COMPLEMENT METHOD		
2 ND	2 nd	BINARY CODES(BCD,XS-3,GRAY CODE)		
2	3 rd	LOGIC GATES(AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR)- SYMBOL,EXPRESSION, TRUTH TABLE AND TIMING DIAGRAM.		
	4 th	UNIVERSAL GATES AND ITS REALIZATION (USING NAND GATES)		
	5 th	UNIVERSAL GATES AND ITS REALIZATION (USING NOR GATES).		
	1 st	BOOLEAN ALGEBRA, BOOLEAN EXPRESSIONS, DEMORGAN'S THEOREM		
	2 nd	SOP,STANDARD SOP,MIN TERM		
3 RD	3 rd	POS,STANDARD POS,MAX TERM		
	4 th	2-VARIABLE,3-VARIABLE,4-VARIABLE K-MAP		
	5 th	SIMPLIFICATION OF SOP AND POS EXPRESSION USING K-MAP		
	1 st	DON'T CARE CONDITIONS.		
	2 nd	2.COMBINATIONAL LOGIC CIRCUITS		
4 ^{тн}		CONCEPT OF CLC, HALF ADDER WORKING AND LOGIC DIAGRAM		
	3 rd	FULL ADDER WORKING,TRUTH TABLE,LOGIC DIAGRAM		
	4 th	HALF SUBTRACTOR, FULL SUBTRACTOR WORKING, TRUTH TABLE, LOGIC DIAGRAM		
	5 th	SERIAL AND PARALLEL BINARY 4-BIT ADDER WORKING		

	1 st	REVISION
5 TH	2 nd	DECODER,ENCODER
	3 rd	4:1 MUX,1:4 DMUX WORKING,LOGIC DIAGRAM
	4 th	2-BIT COMPARATOR, 3-BIT COMPARATOR WORKING
	5 th	SEVEN SEGMENT DECODER(CONCEPT,LOGIC CIRCUIT,TRUTH TABLE,APPLICATION)
	1 st	3.SEQUENTIAL LOGIC CIRCUITS
6 ^{тн}		SLC,TYPES OF SLC,DIFFERENCE BETWEEN CLC AND SLC,CONCEPT OF CLOCK AND TRIGGERING
	2 nd	NOR BASED SR-FF AND NAND-BASED SR-FF WORKING
	3 rd	CLOCKED SR FLIP-FLOP,D-FF WORKING
	4 th	CLOCKED JK FLIP-FLOP WORKING,CLOCKED T-FF
	5 th	RACE AROUND CONDITION, MASTER-SLAVE JK-FF WORKING, APPLICATION OF FLIP- FLOPS
	1 st	4.REGISTERS, MEMORIES & PLD
		SHIFT REGISTERS-SERIAL-IN SERIAL-OUT(SIPO) WORKING
	2 nd	SERIAL-IN PARALLEL-OUT(SIPO)
7 TH	3 rd	REVISION
	4 th	PARALLEL-IN SERIAL-OUT (PIPO) WORKING
	5 th	PARALLEL-IN PARALLEL-OUT (PIPO) WORKING
8 ^{тн}	1 st	UNIVERSAL SHIFT REGISTER AND ITS APPLICATION
	2 nd	DEFINE COUNTER, TYPES OF COUNTER AND ITS APPLICATIONS.
	3 rd	4-BIT RIPPLE COUNTER WORKING, TIMING DIAGRAM
	4 th	BINARY COUNTER WORKING
	5 th	DECADE COUNTER WORKING
	1 st	REVISION
	2 nd	SYNCHRONOUS COUNTER WORKING
9 ^{тн}	3 rd	RING COUNTER WORKING
	4 th	CONCEPT OF MEMORIES,TYPES
	5 th	RAM,STATIC RAM, DYNAMIC RAM
10 TH	1 st	ROM,ITS TYPES
	2 nd	BASIC CONCEPT OF PLD, APPLICATION PLD
	3 rd	5.A/D AND D/A CONVERTERS
		NECESSITY OF A/D AND D/A CONVERTER

	4 th	D/A CONVERSION USING WEIGHTED RESISTORS METHOD
	5 th	D/A CONVERSION USING R-2R LADDER (WEIGHTED RESISTORS) NETWORK
	1 st	A/D CONVERSION USING COUNTER METHOD
	2 nd	A/D CONVERSION USING SUCCESSIVE APPROXIMATE METHOD
11 TH	3 rd	VARIOUS LOGIC FAMILIES & TYPES ACCORDING TO THE IC FABRICATION PROCESS
	4 th	CHARACTERISTICS OF DIGITAL ICS-PROPAGATION DELAY, FAN- OUT, FAN-IN
	5 th	POWER DISSIPATION, NOISE MARGIN, POWER SUPPLY REQUIREMENT, AND SPEED WITH REFERENCE TO LOGIC FAMILIES
12 TH	1 st	FEATURES, CIRCUIT OPERATION; APPLICATIONS OF TTL (NAND)
	2 nd	FEATURES, CIRCUIT OPERATION; APPLICATIONS OF CMOS (NAND)
	3 rd	FEATURES, CIRCUIT OPERATION; APPLICATIONS OF CMOS (NOR)
	4 th	REVISION
	5 th	REVISION

Amarendre Saha

SIGNATURE OF H.O.D

Aditya Nanayan Jena

SIGNATURE OF LECTURER