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CENTRE OF GRAVITY

The point, through which the whole weight of the body acts, irrespective of its position, is
known as centre of gravity (briefly written as C.G.). It may be noted that everybody has one
and only one centre of gravity.

CENTROID
The plane figures (like triangle, quadrilateral, circle etc.) have only areas, but no mass. The
centre of area of such figures is known as centroid. The method of finding out the centroid of
a figure is the same as that of finding out the centre of gravity of a body.

CENTRE OF GRAVITY BY GEOMETRICAL CONSIDERATIONS:

The centre of gravity of simple figures may be found out from the geometry of the figure as
given below.

1. The centre of gravity of uniform rod is at its middle point.

2. The centre of gravity of a rectangle (or a parallelogram) is at the point, where its diagonals
meet each other. It is also a middle point of the length as well as the breadth of the rectangle
as shown in Fig.
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3. The centre of gravity of a triangle is at the point, where the three medians (a median is a
line connecting the vertex and middle point of the opposite side) of the triangle meet as
shown in Fig.
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4. The centre of gravity of a trapezium with parallel sides @ and b is at a distance of
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measured form the side b as shown in Fig. :
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6. The centre of gravnty of a circular sector making semi-vertical angle a is at a distance of
2r sin o

CWRET
7. The centre of gravity of a cube is at a distance of I/ 2 from every face (where /is the
length of each side).

8. The centre of gravity of a sphere is at a distance of d /2 from every point (where d is the i
diameter of the sphere). S

_ 9. The centre of gravity of a hemisphere is at a distance of 3r/8 from its base, measured )
5 along the vertical radius as shown in Fig.

0. The centre ofgnvltyofr&ht circular solid cone lsatadlstance ofh/lfnxnllsbm, =

mnsured along the vertical axis as shown in Fig.

AXIS OF REFERENCE
The centre of gravity of a body is always calculated with reference 1 some assumed axis
known as axis of reference (or sometimes with reference to some point of reference). The axisof
reference. of plane figures, is generally taken as the lowest line of the figure for calculating yamdthe
1eft line of the figure for calculating Y.

CENTRE OF GRAVITY OF PLANE FIGURES

Let X and ¥ be the co-ordinates of the centre of gravity with respect to some axis of reference.

then
=% + a3 Xy + 0y Xy + i
a; +a; + 0y
= al}j-ilh\&«ba,\',-r' ........
and G + Gy + Gy + 0 ]
where a,. a,.4........ etc.. uethcmasmowmdxnwaokﬁmudxwdedrl Xye Ky CUE
atcmempccnvp-co-'m'dmmcsofmemasa, A e .\~\axxsmmrcsp:rtrosamcmsof
3 : - =
' ~ ¥, ¥a. ¥, - oic. arc the respoctive co-ordinates of the arcas a,. .. &, on F-¥ axas with
= -

, pect o same axis of the reference



CENTRE OF GRAVITY OF SYMMETRICAL SECTIONS

Sometimes. the given section. whose centre of gravity is required 1o be found out. 1s symmetrical
about X-X axis or ¥-¥ axis In such cases. the procedure for calculating the centre of gravity of the

body is very much simplified, as we have only to calculate either T or ¥ . Thus 1s due to the reason
mam:ccmurofgmmyofnxbodywmlxonmcmsofsymuy

EXAMPLE
Find the centre of gravity of a 100 mm x 150 mm % 30 mm T-section

Solution.
As the section is symmetrical about Y-Y axis, bisecting the web, therefore its centre of

gravity will lie on this axis. Split up the section into two rectangles ABCH and DEFG as
shown in Fig

Let bottom of the web FE be the axis of reference, " il Oﬂmm i 3i
() Rectangle ABCH , b "‘é L] 0mm
. “ ! (‘
a; = 100 x 30 = 3000 mm? 150 mm
and » -(ISO-E)‘BSM
(i) Rectangle DEFG e L P E
@y = 120 x 30 = 3600 mm? i MEmm
5
and Yy = 22 mm | Fig- 616

o3

We know that distance between centre of gravity of the section and bottom of the flange FE,

= o @3 tans (3000 %135 + (3600 x 60)
. a *as 3000 + 3600

=04 1 mm Ans.

EXAMPLE
Find the centre of gravity of a channel section 100 mm % 50 mm X 15 mm

Solution.
As the section is symmetrical about X-X axis, therefore its centre of gravity will lie on this

axis. Now split up the whole section into three rectangles ABFJ, EGKJ and CDHK as shown
in Fig.



Let the face AC be the axis of reference.

() Rectangle ABFJ
@, =50x15=750 mm?

50
2= 25mm
and x5 N
(i) Rectangle EGKJ A |50 mm->i B 1*!
a, = (100 - 30) x 15 = 1050 mm? T mm
. J ¥
: LA E o pT
X === /0 mm
E 2 ool |
(1f) Rectangle CDHK . X- | PR,
ay =50 x 15 = 750 mm*
and X3 =122= 25 mm

We know that distance between the centre of gravity of the
‘section and left face of the section AC, Fig. 6.11.

ax tamxtax
Q TS

Xs=

&t (750 x 25) + (1030 x 7.5) + (750 % 235) =178 mm  Ans.
750 + 1050 + 750

EXAMPLE
An I-section has the following dimensions in mm units : Bottom flange = 300 x 100

Top flange = 150 x 50, Web = 300 x 50. Determine mathematically the position of
centre of gravity of the section.

Solution:-

Solution. As the section is symmetrical about ¥- ¥ axis,_ bisecting the web, therefore its centre
of gravity will lie on this axis. Now split up the section into three
rectangles as shown in Fig. 6.12. * —>| 150 mm |=-
Let bottom of the bottom flange be the axis of reference. 3 min
(i) Bottom flange
ay = 300 = 100 = 30 000 mm?

300 mm
and » = % = 50 mm l
(i Wed
@y = 300 * 50 = 15 000 mm? 100 fnn|!
! : X
and 2 =100 + __2_9 = 250 mm - |— 300 mm —=f

Fig. 6.12.
(i) Top flange ’
3 ay = 150 x 50 = 7500 mam

oy y,=1oo+300+5‘2_°-425m

We know that distance between centre of gravity of the section and bottom of the flange,
an tay t a3y
& ta ta

_ (30 000 % 50) + (15 000 x 250) + (7500 x 425)
i 30 000 + 15 000 + 7500

¥y =

= 160.7 mm Ans.
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Solution. As the section is not symmetrical about any axis, therefore we have to find out the
values of both X and ytbrthe lamina.

Let left edge of circular portion and bottom face rectangular portion be the axes of reference.
() Rectangular portion

a, = 100 x 50 = 5000 mm?

£ -25+-k¥-75m

and » = % = 25 mm
n Sc);uclmula; portion
ay = I« P2 = E(25)2 = 082 mm?
2 2
X3 =25—£=25~ﬂ=14.4m
3n 3n
50

and M= —i- = 25 mm
(itf) Iriangular portion
a; = w = 1250 mm?
x,-“**‘O*—"S- 100 ;hm
and \1—50+—3q-667mm 5

We know that distance between centre of gravity of the section and left edge of the circular
portion,

AN taxytax _ (5000 x 75) + (982 x 14.4) + (1250 = 100).
a +aytay 5000 + 982 + 1250
= 711 mm Ans. ! i i
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Similarly, distance between centre of gravity of the section and bottom face of the rectangular
portion,
o qy1+a;y;+a;y; (5000x25)+(982x25)#(1250!667)
qta ta 5000 + 982 + 1250
=322mm  Ans,

MOMENT OF INERTIA

The moment of a force (P) about a point, is the product of the force and perpendicular
distance (x) between the point and the line of action of the force (i.e. P.x). This moment is
also called first moment of force. If this moment is again multiplied by the perpendicular
distance (x) between the point and the line of action of the force i.e. P.x (x) = Px?, then this

quantity is called moment of the moment of a force or second moment of force or moment of
inertia (briefly written as M.1.)

MOMENT OF INERTIA OF A PLANE ARFA




Consider a planc area, whose moment of inertia is required to be found out. Spit up the whole
area into a number of small clements.
Let a,.a,.a, .. = Areas of small clements, and
Ty. Ty 1y, . = Corresponding distances of the elements from the line about
which the moment of inertia is required to be found out.
Now the moment of inertia of the area.
: I=a5 +ar +a,r8 +...

- -
=}_ar

[!, §)

Y

UNITS OF MOMENT OF INERTIA
As a matter of fact the units of moment of inertia of a plane area depend upon the units of the
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area and the length. e.g.

1. If area is in m? and the length is also in m, the moment of inertia is expressed in m*
2. Ifarea in mm? and the length is also in mm, then moment of inertia is expressed in mm®*

MOMENT OF INERTIA BY INTEGRATION

The moment of inertia of an area may also be found
out by the method of integration as discussed below:

Consider a plane figure, whose moment of inertia is
required to be found out about X-X axis and Y-¥ axis as
showninFig  Letus divide the whole arca into a no. of

strips. Consider one of these strips. ,
Let dA = Area of the strip l
: g X
X = Distance of the centre of gravity of the | -
strip on X-X axis and e .
Y = Distance of the centre of gravity of the Moment of inertia by integration
strip on ¥-¥ axis. ! z: :
We know that the moment of inertia of the strip about ¥-¥ axis
=dA 1
Now the moment of inertia of the whole area may be found out by integrating above
equation. i.c.,

ooy i ST
EELIS Sl el AR

MOMENT OF INERTIA OF A RECTANGULAR SECTION:

Consider a rectangular section ABCD as shown in Fig. whose moment of inertia is required

Let b = Width of the section and -
d = Depth of the section. g T
Now consider a strip PQ of thickness dy parallel to X-X axis :
and at a distance y from it as shown in the figure 2
Area of the strip x pom=--- E ---f--' x d
' = b.dy ' | &
‘We know that moment of inertia of the strip about X-X axis. - I
= Area x YV = (b.dv) VW =b y. dy P o == Qi
Now *moment of incrtia of the whole section may be found "“"‘"—3—‘,’:‘—““ c
out by integrating the above equation for the whole length of the je—— Iv’—bl
lamina i.c. from -2 to + % Rectangular section

db®
12

Sumilarly, Iy =

MOMENT OF INERTIA OF A HOLLOW RECTANGULAR SECTION:




Consider a hollow rectangular section. in which ABCD is the main section and EFGH is the

cutout section as shownin Fig
Let b = Breadth of the outer rectangle. A 7 8
‘ d = Depth of the outer rectangle and T
b,. d, = Corresponding values for the
cut out rectangle. d
ummmmamdumm Xeow ¥
ABCD about X-X axis
N’
A0
Mmdmo‘hmmmﬂaﬂ p LSy }_
about X-X axis = £
_ha b b il
12 (i) Hollow rectanguiar
M.L of the hollow rectangular section about X-X axis, T
Bt Iy =M1 of rectangle ABCD - M 1 of rectangle EFGH
b - _ad
| i 12
. Similay, z, = PANY
i Ad A el

THEOREM OF PERPENDICULAR AXIS:

1 and 1, be the moments of inertia of a plane section about
moment of inertia I mwmumuwﬁu
M&md&!n’ﬂ’umh

~ a plane section s shown 1n Fig. -

-~ Now comsider a plane OZ perpendicular to OX and OF { -~
= Lamuhamm&mmmummm e
G?-r

= Fmﬁcm of&ﬁ;m w:ﬁndﬁm

!“—l"?‘f’
%mmxmcmﬁu[maofﬁkanai’ahom;\x
: Iﬁ:da
I.ﬁ.dr P
Iy=da r=dair + ¥
=do v +da xgrl,,}é{u.

MOMENT OF INERTIA OF A CIRCULAR SECTION:




Consider a circle ABCD of radius (r) with centre O and X-
X' and ¥-Y" be two axes of reference through O as shown in Fig.

Now consider an elementary ring of radius x and thickness
dx. Therefore area of the ring, :

da=2xx de X’-‘ g

and moment of inertia of ring, about X-X axis or ¥-¥ axis \
= Area x (Distance)?

=2xx.dex @ b,

‘ =2xx" dv y

Now moment of inertia of the whole section, about the

cemﬂmamufmmmbymmmewowmmfmmemmamemkw.
fromOtor

Iy -IZu.r’ dy=2x I.r’ dx
° °

g i n 4 n 4 s d
Ianzx[T -—(r) =-;—|d) (subsmmmg r--i.)
W know from the Theorem of Perpendicular Aw that
Iyt =1,

1 1 n n
PG AR - AL Dl B .
XX . ) 2 %33 (d) xM (d)

MOMENT OF INERTIA OF A HOLLOW CIRCULAR SECTION:

Ounhahﬂvwmuhmuhnﬁ;
whose moment of inertia is required to be found out.

5
e U

hmfﬁcmq‘mafnwm“umwﬂmq’mu;

denoted by I_, then moment of inertia of the area about any other axis AB, parallel o the first.
aa&mhﬁm&zmqgmmynymby o
1y=I_+ak’ =
where 1, , = Moment of inertia of the area about an axis AB.
I, = Moment of Incrtia of the arca about its ceatre of gravity
a = Area of the section. and

ﬁmﬁmd&%mﬁmamm@@@w@&g@
- * I,=38v
m&w&&emamﬁtmw 7
&uhnr ‘"Sa(h «sw?kn

=alF+ I 40

tmay be noted that ¥ i* 8a = 35‘%’*’* =] Iaspf“waﬁmz)mzéf
the aleebraic sum of moments of all the areas. about an axis throush centre o m

uananduequal to V. where 15 fhe distance between the mm@gz*
the cenire of gravity. which otr":ou,lx 15 2010



MOMENT OF INERTIA OF A TRIANGULAR SECTION:

Consider a triangular section ABC whose moment of inertia
is required to be found out.
Let b = Base of the triangular section and
h = Height of the triangular section
Now consider a small strip PQ of thickness dx at a distance of
x from the vertex A as shown in Fig. . From the geometry of the 2

y C
figure, we find that the two triangles APQ and ABC are similar &5 ———>
Therefore . = Triangular section.

X BC.x bx
We know that area of the stnp PQ
' bx
=— dx

and moment of inertia of the stnip about the base BC

= Area x (Dl&!ﬂnff’: . % df (h fi .‘Af - %1 (h = _l,)zﬁ, . = .7 :- _.. SR
1

v

. How momen! of mertia of the whole tangular section may be found out by mtegranns 1
— above equation for the whole height of the mangle | ¢, from Do h L e

kb g
Iy = |, G h -0 dy

{RES

.%[:x(h’-u‘-zlx)dx

hi 2 7 12

b{x’h’ ¢ ] b

= - | — e — IR anspu
4

Wekmwm_axdtstancebemuncenmofgawyofﬂxmnngﬁars«mmdholc, :

,“ : dah
3

Momnofmofmcmnpmgcmmnmmmmwghmcmo&mw@@
paraliel to X-X axis., g

Ig=1ly ~ad*

bh' (bh)(h)’ b’ b
B ] — - T v g
19 Lo 36 S
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MOMENT OF INERTIA OF A SEMICIRCULAR SECTION:

- Consider a semicircular section ABC whose moment of
inertia is required to be found out as shownin Fig. . _ .
Let r = Radius of the semicircle.
We know that moment of inertia of the semicircular
section about the base AC is equal to half the moment of inertia
of the circular section about AC. Therefore moment of incrtia

of the semicircular section ABC about the base AC,
JH 3 4
Lic =3 X X (d)! =0393 1 [ ] semicicutar section ASC.

‘We also know that area of semicircular section,
a-l ,x xr‘! E_ri
2 2

and distance between centre of gravaty of the section and the base AC.,
4r
h=—
3n

* Moment of mertia of the section through its centre of gravity and parallel to v.x axis,

2 3
L ] il R wr[4r
I = 1,0 ~ ah .[-8 x (r) ]—[-—F- [»‘;) ]

n 4. 8 4 3 ‘ % HE
Y AR e S s [ B fY A ;
(8" ] [chuiJaO“’ | Sidlare! _ |

E Note. The moment of inertia about vy axis will be the same ay tha abomﬂlc{mm
Cie.0393

‘ 1l ‘ ST
TS TP e et ! (R R (1R WA AR B AP e P S R

MOMENT OF INERTIA OF A COMPOSITE SECTION

mm&mdammmhﬁnﬂmw&fo&'hgm:
: & mdﬂwqmmmmmm(i:_.mmmm
etc.. and find the centre of gravity of the section).
2. mecmmsdmdmcsemsmmarmvccmdgnvny
3. Now transfer these moment of inertia about the requred axis (AB) by the Theorem of
Paralle] Axis. ie..
1,=1,+ak’
I, = Moment of inertia of a section about its centre of gravaty and paraliel 10 the axis.
a = Arca of the section,
i = Distance between the required axis and centre of sravaty of the section
4, The moments of inertia of the given section may now be obtamed by the algebrasc sumof

g

AT

& the moment of inertia about the required axas L
EXAMPLE

Find the moment of inertia of a rectangular section 30 mm wide and 40 mm deep about

12



X-X axis and Y-Y axis.
Solution:-

Given: Width of the section (b) = 30 mm and

Depth of the section (d) = 40 mm.

We know that moment of inertia of the section about an axis passing through its centre of
gravity and parallel to X-X axis,

’ 3
Ixx -=M3 S 1’ A
: 12 12
= _d¥  40x(30) _ 5 4
: Similarly Iyy = = = = = 00x 10" mm Ans.
EXAMPLE

Find the moment of inertia of a hollow rectangular section about its centre of gravity if
the external dimensions are breadth 60 mm, depth 80 mm and internal dimensions are
breadth 30 mm and depth 40 mm respectively.

Solution. Given: External breadth () = 60 mm; External depth (d) = 80 mm ; Internal
breadth (5,) = 30 mm and internal depth (d;) = 40 mm.

We know that moment of inertia of hollow rectangular section about an axis passing through
its centre of gravity and parallel to X-X axis,

bd' md' _60(30) 30 (40)°

i i : P
Iy e % 7 P 2400 x 10° mm Ans.
i db'  d b _ 80 (60) 40 (30)° 3
b 1 3 Lo = Sl = e = 3 -
wmilarly, i T = 5 - 1350 x 107 mm Ans,
EXAMPLE

Find the moment of inertia of a circular section of 50 mm diameter about an axis
passing through its centre.

Solution.

Given: Diameter (d) = 50 mm We know that moment of inertia of the circular section about
an axis passing through its centre.

g =1‘§@3‘ =3€Z“ (60) =307%x10° mm'  Ans.
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EXAMPLE
Find the moment of inertia of a T-section with flange as 150 mm % 50 mm and web as
150 mm X% 50 mm about X-X and Y-Y axes through the centre of gravity of the section.

First of all, let us find out centre of gravity of the section.
As the section is symmaetrical about ¥-¥ axis, therefore its centre  F——150 mm——{ _i
of gravity will lie on this axis. Split up the whole section into two [ '
-rectangles viz,, 1 and 2 as shown in figure. Let bottom of the web
‘be the axis of reference.
(D) Rectangle (1)
a, = 150 x 50 = 7500 mm?

50 mm

150 mm
; : 50
and y1=150+ﬁ'2-=175mm
{if) Rectangle (2)
a, =150 = 50 = 7500 mm? —{50 mm la—
" 150 Fig. 7.14,
and Va2 = T =75 mm

We know that distance between centre of gravity of the section and bottom of the web,

5= ay tay _ (7500 x175) + (7500 x 7).
a ta 7500 + 7500
-Moment of nertia about X-X axis

125 mm

We also know that M.1. of rectangle (1) about an axis through its centre of gravity and paralle]
to X-X axis.
150 (50)°
1

Igi = =1.5625 % 10* mm*

and distance between centre of gravity of rectangle (1) and .\’ .e\"axms
By LTS =125 50 mm

<+ Moment ofimrﬁl of rectangle (1) about X-X axis
Iy +a ' =(1.5625 x 10°) + [7500 x (50)*] = 20.3125 x 10° smm*
Similarly, moment of inertia of rectangle (2) about an exis through its centre of gravity and
pnnllel to X-X axis,

Iga =14.0625 % 10° mm*
and distance between centre of gravity of rectangle (2) and X-X axis,
Ay =125 - 75 = 50 mm
++  Moment of inertia of rectangle (2) about X-X axis :
=lgy +ay i =(14.0625 x10%) +[7500 x (50)%] = 32.8125 x 10° mm*
Now moment of inertia of the whole section about X-X axis,
Ty =(20.3125 x 10% + (32.8125 x 10% = 53.125 x 106 mm*  Ans.
Moment of inertia about ¥-Y axis
We know that M.I. of rectangle (1) about Y-¥ axis

_ 50 (150)°

_ 50 150)°
12

= 14.0625 x 10° mm*

and moment of inertia of rectangle (2) about ¥-¥ axis,

< P |
o DO00): o Satns it st

Now moment of inertia of the whole section about ¥-¥ axis, . J A
Iy = (14.0625 x 10%) + (1.5623 x 108 = 15.625 * 109 mm*  Ans.




EXAMPLE
An I-section is made up of three rectangles as shown in Fig. Find the moment of inertia

of the section about the horizontal axis passing through the centre of gravity of the
section.

Solution. First ofall, let us find out centre of gravity of the section. As the section is symmetrical
about Y-Y axis, therefore its centre of gravity will lie on this axis

Split up the whole section into three rectangles l.2md3uahawz;

& nms j& 60 mm |
in Fig. 7.15, Let bottom face of the bottom flange be the axis of i
reference. ? | (©)] I 20 mm
() Rectangie 1 !
a, = 60 x 20 = 1200 mm .
and »n = 20+100+2—2°-l30mm @ 100 mm
(i) Rcctamglc 2 b : -~ 20 mm
= 100 * 20 = 2000 mm? ‘
and y;—20+-1—22=70mm ;
(iif) Rectangle 3 l ©) l e g
ay = 100 x 20 = 2000 mm? fe——100 mm —]
and Y3 = % = 10 mm 2 Fig. 7.15.

We know that the distance between centre of gravity of the section and bottom face,

g=AN @yt ays (1200 x130) + (2000 x 70) + (2000 % 10) ey

Y { a tay tay 1200 + 2000 + 2000
R R =60.8 mm

T -11' R

We know that moment of inertia of rectangle (1) about an axis through its centre of gravity
and parallel to X-X axis,

i
-&;"—02—=40x103mm‘

and distance between centre of gravity of rectangle (1) and X-X axis,
k=130 -60.8 = 692 mm
<. Moment of inertia of rectangle (1) about X-X axis,
=Ig +a kit =(40 x10%) +[1200 x (69.2)*] = 5786 x 10° mm

Snmlarly moment of inertia of rectangle (2) about an axis through itz centre of gravity and
parallel to X-X axis,

IGI Y

20 x (100)° -
Iy = ’+) = 1666.7 % 10° mm*

and distance between centre of gravity of rectangle (2) and X-X axis,
hy=70-60.8=92mm
Moment of inertia of rectangle (2) about X-X axis,

=Jg, + a8 =(1666.7 x 10°) + [2000 x (9.2)°] = 1836 x 10° mm

Now moment of inertia of rectangle (3) about an axis through its centre of gravity and parallel
to X-X axis,

> .
w 66.7 % 10° mm*
e

- and distance between centre of gravity of rectangle (3) and A-X axis, s
h, =60.8— 10 =50.8 mm

Moment of inertia of rectangle (3) about X-X axis,

Thata

= Ig: + a; h‘ = (66.7 x 10’) + [2000 x (530.8)° ] J2.‘.SX 10’
Now moment of inertia of the whole section about X-1"axis,

1= (5786 % 10%) + (1836 x 10%) + (5228 x | 03)—1”8)0X10’mm“

ST T ft bl at
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Simple Stresses and strains
Stress:

Stress of a material is defined as the resistance offered by the material per unit cross sectional area of the

member subjected to external force.

Mathematically, stress is expressed as

Resistance Force
Stress = - =
Cross sectional area  C/Sarea
c _R_F
A A
Where, F = externally applied force, and

A = Cross sectional area of the member
Unit of stress in S.I system of units is N/mm?.

Depending upon the nature of the force, stresses are of various types. Force acting on a structural member
may be perpendicular to the plane or tangential to the plane. The force may tend to bend the plane about

any of the axis on the plane or it may twist the plane about the axis perpendicular to the plane.



Stress

l _
| ]

Direct stress/Simple stress Indirect stress Combined stress
MNormal stress Shear stress Bending stress  Torsional stress

| Y
l } ' I

Tensile stress Compressive stress Tensile stress Compressive stress

Fig. Stress Types



Strain: Strain is the measure of deformation produced in the structural member by the applied load.
It is expressed as the ratio of change in dimension to the original dimension of the member before
application of load. It is denoted by ‘e’ (Greek small letter epsilon). Strain is a dimensionless quantity as

it is the ratio of same units.

(c) Shear (d) Torsion

Compressive stress

(e) Bending
Figure. Types of Loading



The dimension may be length, area, volume or the change in angle. The nomenclature of the strain

follows according to the dimension.

Direct Stress: Direct stress also called simple stress is induced due to direct loading condition on the

plane. It is of two types.

a. Normal stress

b. Tangential stress or shear stress

Normal stress: Stress developed on a plane subjected to axial loading (load perpendicular to the plane) is

called normal stress. Normal stress is of two types.

a. Tensile stress

b. Compressive stress

I
P : Tensile Force =P
- . c/s area
U | R -
s
]
P : Reistance, R=P
- ]
) - Tensile
/ Force=P

Reistance, R=P

Fig. Tensile stress

Tensile stress: The stress induced on a plane of a body subjected to axial tensile load (two equal and

opposite pulls) is known as tensile stress.



When a body of uniform cross section e.g., a steel rod is subjected to an axial pull or tensile force, it has a

tendency to elongate. The stress induced at any cross section of the rod is known as tensile stress.

It is the resistance of the material 1 of the member per unit area of cross section normal to the load.

Tenile stress — Resistance _ T ensile Force
Original cross sectional area C/Sarea
R
c =__=__
4, A4,
‘4
- O
- d
e Ly >
[
i (L—Ly)
5 - F A4,
e o ——— —_—
dO

Fig. Axial Tensile Load

Tensile strain: It is the ration of increase in length to the original length of the member subjected to axial

tensile force.

oL
€ ;=
LO
Where, Lo = Original length of the member before being subjected to load

L = Final length due to the applied load
oL = L- Ly =increase in length

Compressive stress: When a structural member is subjected to compressive force, it has a tendency to
decrease in length. The stress induced in the member by virtue of the resistance offered by the material of

the member is known as compressive stress.

The stress induced in the material of the member by virtue of the resistance offered by it against decrease

in length due to axial compressive load is known as compressive stress.
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Fig. Axial Compressive Load

) Resistance Compressive Force
Comprssive stress = —— - =
Original cross sectional area C/Sarea

Compressive strain: It is the ration of decrease in length to the original length of the member subjected

to axial compressive force.

Lateral strain: It is the ratio of change in lateral dimension to the original lateral dimension.

Strain

Lateral strain,e _ Change in lateral dimension _ &d _ d—do
¢ = Original lateral dimension ~ d =~ d

0

Strains in the direction transverse to the direction of load are called lateral strains. Lateral strains
have a nature/sense opposite to that of the linear or primary strain. Lateral strains are also called
transverse strains or secondary strains.

Elongation: Increase in the dimension, length, breath or depth (height) of the structural member

on account of externally applied load is known as elongation.

Contraction: Decrease in the dimension of structural member on account of externally applied

load is known as contraction.



Poisson’s ratio: The ratio of lateral strain to the linear strain is known as Poisson’s ratio. It is
denoted by ‘v’ (Greek small letter Nu). Within elastic limit, in most material, this ratio remains

fairly constant.

. . . Lateral strain €,
Poisson's ratio,v = =

1

Linear strain €l

/l- 1 ..|\¢/

Z
Fig. Axial load along X-axis

The value of for most materials varies from 0.2 to 0.33. Poisson’s ratio for steel is 0.3 and that

for concrete is 0.15. Poisson’s ratio cannot be 0.5 for any material.

Let us consider a bar of length /, breath » and depth d subjected to axial tension of F along X-

direction as shown in the figure.

Let strains along X, Y and Z directions be € ,& , and ¢ respectively.

Mathematically,

Sy = _VSx
€z =—V&

Negative sign indicates that the strain in the Y and Z directions are compressive, i.€., opposite to

the strain in X direction.



Volumetric strain:

It is the ratio of change in volume to original volume of the body (structural member) subjected

to loading.
AV
e . =
14
€y = volumetric strain
Where, V' = original volume of the body

AV = Change in volume (increase or decrease)

Volumetric strain is the sum of strains in three mutually perpendicular directions.

Volumetric strain of a rectangular bar (cuboid):

Fig.

Let us consider a rectangular bar of length /, breadth b and depth d is subjected to axial tension

P1, Pand P3 along X, Y and Z directions respectively as shown in the figure.

Let, ol = change in length
ob = change in breadth
od = change in depth
Original volume, V =lbd
Final volume = (I + 6I) (b + 6b) (I + 5d)
=1bd + Ib 6d + 1d 6b + bd 61 + 1 6b 6d + b 1 6d + d 6l 6b + 6l 6b 6d

=1lbd + Ib dd + Id 6b + bd 6]  (neglecting product of small quantities)



Change in volume, 0/ = Final volume — Initial volume
= (Ibd + Ib od + Id 6b + bd d]) - Ibd
= Ib dd + Id ob + bd ol

Change in volume _ 8V _ [b8d +1ddb + bdd!
Original volume V Ibd
ol db dd
+ +
I b d
=&y + & y + & z

Volumetric strain =

Volumetric strain of a cylindrical rod:

Let us consider a cylindrical of length / and diameter d as shown in the figure subjected to axial

pulls. Let the change in length and diameter is 0/ and Jd respectively.

nd?l

Original volume =

Finalvolume="(d+3d ) (1+81) =" (d% +d 1 +21d5d )
4 4

Ignoring products and higher powers of smaller quantities,

T
Change in volume =9V = A (d 281 + 2ld5d)

) ) Change in volume 8V
Volumetric strain =¢ = =

v

Original volume 14

d?dl+2iddd 31  bd

d?l [ d
€,=&,+&,+¢,
Since, €y=¢€; :M
d

Volumetric strain = Strain of the length + Twice the strain of the diameter.



T
i X

» ! -

In general, for any shape volumetric strain may be taken as the sum of the strains in three

mutually perpendicular directions.

Volumetric strain of a sphere:

Let us consider a cylindrical of diameter d as shown in the figure. Let the change in length and

diameter is dd.

3
Original volume,V = %

Final volume =" (d+8a)
6
pi4
= 4(d > +3d%8d ) igoring thehigher powers of dd

T
Change in volume = o = 6(3d *5d )

, _ Change in volume 8V
Volumetric strain =¢ = =

¥ Original volume 14
_3d%8d _38d 36
===, —3ea

Volumetric strain = Three times the strain in the diameter.

Shear Stress: Stress induced/developed on a plane subjected to tangential force (force parallel to the

plane) is called shear stress. A material is said to be in a state of simple shear if it is subjected to only

shearing stress.



If two equal and opposite parallel force act on a body, then there is a tendency of one part of the body to
slide over the other. The stress induced in the body is known as shear stress. Shear stress is tangential to

the area over which it acts.

A shearing stress alters only the shape of the body, leaving the volume unchanged.

Rivet
Force (—\ff
/ | g\ |—I'? @ Area=A
/ u \ Plane of shear Rivet cross section
Plates
- Rivet

. (X
< ] ,
. -
T

Fig. Shear stress

Let us consider a rectangular block of length /, width b and depth d is fixed to the surface at its

bottom face as shown in the figure.
F = Force applied tangentially along surface AB and is called shear force

For equilibrium of the block the surface at CD will offer equal and opposite tangential reaction R

=F.
Let the block be consists of two parts 1 and 2 separated by a section XX.

Consider the equilibrium of part 1. In order that the part 1 doesn’t move from left to right, the
part 2 will offer a resistance along the section XX such that R = F. Similarly, for equilibrium of

part 2, part 1 will offer a resistance R along the section XX such that R =F.

The resistance R along the section XX is called shear resistance.
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Fig. Shear (a) stress and (b) strain

Shear deformation:

When the block doesn’t fail in shear, it undergoes shear deformation as shown in figure (b).
Since the bottom of the block is fixed, the block takes the shape of A’B’CD. The block
undergoes distortion of ADA’ = ¢.

Let us think the block comprises of a number of thin horizontal layers. Each layer undergoes

horizontal displacement in proportion to its distance from the lower face of the block. The ratio



of the horizontal displacement of the layer to distance of the layer from the bottom face is known

as shear strain.

o
Shear strain = ___

8d
tan¢ = _l
d

When ¢ is very small, ¢ = tand = 8_l

Elastic Limit: The limit of stress within which a structural member of any material under stress

regains its original shape and size after removal of loading is called elastic limit of the material.

The maximum stress which the material can withstand without causing permanent

deformation after the removal of load is called elastic limit.

If the stress exceeds the elastic limit, the member will not regain its original configuration. A

residual strain called permanent set remains in the member.

Limit of proportionality: The limiting value of stress up to which stress is proportional to the

strain is known as limit of proportionality.

In case of steel, a well pronounced proportionality limit can be found from tensile test. Some

materials have a very small value of proportionality limit, others may not show such limit.

Hooke’s Law: In 1678, English Mathematician Robert Hooke observed that there is a definite
relationship between the elastic deformation (measured as strain) and the stress intensity causing

it. He offered his observation in the form of a law called Hooke’s law.

Hooke’s law states that when a material is loaded up to certain limit of stress intensity within

elastic limit, the stress is directly proportional the strain in the material.

O g
Mathematically, =2 _F (Constant of proportion ality)
€

Where, o is stress and ¢ is strain in the material of the member. The constant of proportionality, £

is known as modulus of elasticity or elastic modulus. The elastic modulus for normal stress and



strain is also called Young’s modulus. The modulus of elasticity is a measure of stiffness of the
material. It has the same unit as stress. The slope of the stress-strain diagram in the linearly
elastic region gives the value of modulus of elasticity (E). Modulus of elasticity of steel is equal

to 210 GPa, aluminum is 73 GPa and plastic is from 1 to 1.4 GPa. (1 GPa = 1000 N/mm?)

If P is the axial force acting in a prismatic member of sectional area 4 and length /,

d!
Strain, TzS:>8[=8[
/
=51=°"" = P_l
E AE
The product AE is called the axial rigidity or axial stiffness of the member.

For axial member, force necessary to produce one unit deformation (deflection) is known as

axial stiffness and is denoted by K. Hence, AE/L is the axial stiffness for axially loaded member

of length L. Reciprocal of stiffness, %< is known as flexibility. More is the value of K, more is

the stiffness and less is the flexibility and vice versa.

Modulus of rigidity: The ratio of shearing stress to corresponding shear strain within elastic
limit is a constant known as modulus of rigidity or shear modulus. It is denoted by letter G. It has

same unit as shear stress.

T
Modulus of rigidity, © = A

T = Shear stress

Where, )

and ¢ = Shear strain
Bulk modulus: When a body is subjected to identical, ¢ (equal and like) stresses in three
mutually perpendicular directions, it undergoes uniform changes in three directions without
undergoing distortion of shape. In such case, the ratio of normal stress to volumetric strain is

called Bulk modulus. 1t is denoted by letter K.



(a) Identical tensile stress (b) Identical compressive stress
Fig. Stresses in three mutually perpendicular directions

Bulk modulus may be defined as the ratio of identical pressure acting in three mutually

perpendicular directions to corresponding volumetric strain.

The element in figure (a) is subjected to identical tensile stress in three mutually perpendicular
directions and the element in figure (b) is subjected to identical compressive stresses. Hydrostatic
pressure acting on a submerged body is an ideal example of identical stresses in three mutually

perpendicular directions.

Mathematically,

Complimentary shear stress:

A set of shear stresses acting across a plane is always accompanied by a balancing set of
transverse shear stresses of same intensity across a plane normal to the previous plane. The

balancing stress is called complimentary shear stress.

Let us consider a rectangular block ABCD of unit thickness perpendicular to the plane of the
paper subjected to a shearing stress, T alongside AB and CD as displayed in the figure. The
forces acting on these two faces are each equal to 1.(AB.1) = 1.(CD.1). These two equal, opposite

and parallel forces will form an anti-clockwise couple of magnitude =t x AB x AD.
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If the block is in equilibrium, a restoring (clockwise) couple of equal magnitude has to be
developed by virtue of material resistance of the block. For this to happen, shear stress of

intensity T’ must be set upon the faces AD and BC.

The forces acting on these faces are each equal to ".AD. These two equal, opposite and parallel

forces will form a restoring couple (clockwise) of magnitude =1” x AD x AB.
For, equilibrium equating the moment of two couples (acting and restoring), we have

t".AD.AB =1.AB.AD
=1t'=1

7' is called the compliment aryshear stress.

Hence, a set of shear stresses is always accompanied by a complimentary set of shear stresses of

equal intensity.

F
A
F
. F

Fig. Complimentary shear stress



As a result of the two couples formed due to applied shear forces and the shear forces arising due
to complimentary shear stresses, the diagonal AC of the block will be subjected to tension while

the diagonal BD will be subjected to compression.

Diagonal tension and compression:

Consider an elemental rectangular block ABCD with unit thickness perpendicular to the plane of
the figure. Let the element be in the state of simple shear with shear stress intensity of t across

the surfaces as shown in the figure.

Consider the plane through the diagonal BC which makes an angle of 6 with face CD. Consider
the equilibrium of triangular wedge BCD. The wedge is subjected to the following forces.

a) Force along BC= 1.BC(])
b) Force along DC = 1.DC (—)

c) Force normal to the plane DB = G . BD

d) Force tangential to the plane DB = 19 .BD

T
A e 2 Gy B
T - Tg l -
0
D& C D — C
T
T

Fig. Diagonal

Resolving the forces normal to the plane BD and along the plane BD, we have

oo (BD.1)=1 (BC.1)cos® +1 (DC.1)sin 0
= 09.BD=1.BDsin 0 cosO +7t.BD cosO sin 0 .

= Geo =7.2sin 0 cosO =1 sin 20
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10 (BD.1)=—1 (BC.1)sin 0 +1 (DC.1)cosO
Again, = 19.BD=—1.BDsin 0 sin 0 + 1.8 cosO cosO

= T :r.(cosze—sinz(%):r c0s 20
Hence, normal and tangential stresses on plane BD are

Go =T sin 20

and T =7 cos20

For plane of maximum normal stress,
sin 20 =+1
i.e.,20 =+90° j.e. 0 =+45°
when0 =45°, 6o =+t (+ vesign indicates that normal stressis tensile)
when0 = -45° 6y =—1 (— vesign indicates normal stress compressive)

Corresponding to 0 = +45°  tangential stressto =0

Hence, the planes carrying maximum normal stress don’t carry any shear stress.
For plane of maximum shear stress,

c0s20 =+1
i.e.20 =00r180° i.e.,0 =00r90°



Planes corresponding to maximum shear stress, the normal stresses are zero.

When an elemnt is in the state of simple shear, the maximum direct stresses are induced on
mutually perpendicular planes which are at 45° to the planes of pure shear. One of the maximum
direct stresses is tensile while the other is compressive. The direct maximum tensile and
maximum compressive stresses are of the same magnitude as the shear stress on the planes of

pure hear.
Relationship between modulus of elasticity and modulus of rigidity:

Consider a square block ABCD of side a and thickess unity perpendicular to the plane of the
paper. Let the block be in the state of simple shear (pure shear) with shear stress intensity of t
across the surfaces as shown in the figure. The block will undergo distortion of shape due the

system of stresses.

It is evident from the stress components that the diagonal AC will be elongated and the diagonal

BD will be shortened.

The increase in length of the diagonal AC can be computed by considering the diagonal tensile
and compressive stresses on AC and BD respectively. It is known that the diagonal tensile and

compressive stresses in a square block are each equal to t.

Strain in the diagonal AC = Strain in AC due to diagonal tensile stress on the plane BD + Strain

in length AC due to diagonal compressive stress on plane AC.

Strainin AC = * LYl - (1+V) (1)
E FE E
A q——T_ B Ay o A ]?1 B
VR ]
ixﬂ:h:“x \\
Y \\\ g
T 1 \ S III"|.
ﬁ'-.¢' o, '|.¢'
v NN
[ N
C —_— D D C

T
Fig. Square block with simple shear



Strain in the diagonal AC can also be computeed from the distorted geometry of the block.
Let the geometry ABCD deform to the position A1B1CD through the angle ¢.

Increase in length of the digonal AC = A;C — AC.

Let AA> be perpendicular to A;C. Since the amgle ACA; is very small, AC = A,C

Hence, icrease in length of the diagonal AC = AiC - A,C = A1A> = AAicos AA1A,. But the
angle AA A is equal to BAC =45°.

Hence, increase in length of the diagonal AC

AA
= AA cos45" = —
V2
A4, _ 44
Shear strain, 9 = =44
AD a
= AA1 = ad

Icrease in length of the diagonal AC = a2

Length of the diagonal AC = a2

I in length 1
Strain of the diagonal 4C= nereasein fength _ = % Q)

ad
Original length V2 a2
From Equation (1) and (2), we have

Sb:l(l+v):>T_=I(1+v)
2 E 2G E

E=2G(1+Vv) A3)

Relationship between Young’s modulus and bulk modulus:

Consider a cube of side ‘a’ subjected to direct tensile stress of intensity ¢ in three mutually
perpendicular directions. Let E be the Young’s modulus and v, the Poisson’s ratio.

Let us consider the strain in one edge AB of the cube.



Strain in AB due to tensile stress in the X-direction

.. . . . . (0}
Strain in AB due to tensile stress in X - direction = —

<
Q

Strain in AB due to tensile stressin Y - direction = —

o
Total Strainin AB,e =~ -~ -~ = (1-2v)
x E E E E

c
Similarly strains in the other two edges are each qual to €, = €. = E(l ~2v)

3c
Volumetric strain, € , =€, +€,+€, = E(l—ZV)

Bulk modulus, K= Normalstress c
Volumetric train 29 (1 _ 2\/)
E

= E=3K(1-2v) “4)

The relationship between Young’s modulus and Bulk modulus is given by the above equation.

Further from equation (3), we have



E=2G(1+Vv)

E

—~ oy =_——2
G

From equation (4), we have
E=3K(%—2V)
(E )
N )
:Est(s—E):M

.\ G G

= EG = 9KG - 3EK

= E(3K + G)=9KG
_ 9KG
3K+G

The above equation is the relationship between three elastic modulii.

For isotropic and homogeneous material, there are four elastic constants, namely £, G, K and v.
Out of the four constants two are independent constants and other two can be obtained by using

the relationship between them.
Deformation of prismatic bar due to uniaxial loading:

Consider a prismatic bar subjected to uniaxial tensile load as shown in the figure.
Let

P =Load acting on the bar
[ = Original length of the bar
A = Cross - sectional area of the bar
o = Stress induced in the bar
E=Young's modulus of the material of the bar
€ = Strain in the ba

0/ = Deformatio n or change in length of the bar

We know that,
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Fig. Uniaxial load (Tensile)

P . c P
Stress,c = —> Strainge = __ =
E AE
A Pl
and deformation,dl =€ .E = oL _
E AE

Deformation of prismatic bar under self weight:

Consider a freely hanging prismatic bar AB of length L, cross sectional area 4 and weight W as

displayed in the figure. Let w = Specific weight of the material of the bar.

/‘// LA L L

Z

dx
L
-T- Load acting on the elemental
X

length dx = Weight of bar
of length x = wAx

Yy Y
B
Fig.
Let us consider an elementary length, dx of the bar at a height of x from the bottom B of the bar.
Weight of the portion of the bar below XX act as tensile force on the elemental length. Weight of

the portion below XX, P = wAx.

Elongation of the elementary length dx due to the weight of the bar of length x



Pdx (oAx)dx
G
_ oxdx
E

Total elongation of the bar due to self weight,

Loxdx ot

jé(dx)=£7 =F jxdx
_(@l4).L

© 24E
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Tensile Test:
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F
(a) Universal Testing Machine (UTM) V) Fenxile/font opaciamen

Fig. Tensile Test Setup



The tension test is the most common method for determining the mechanical properties of
materials, such as strength, ductility, toughness, elastic modulus, and strain hardening capability.
In a tension test, a specimen of standard dimension is subjected to a continually increasing
uniaxial tensile force while simultaneous observation of elongation is taken by means of
extensometer fitted to the specimen. The results of the test are plotted as stress-strain diagram.
A standard tensile test set up with the representative (a) UTM (Universal Testing Machine) and

(b) tensile test specimen is shown in the figure.

A stress-strain diagram is a diagram in which corresponding values of stress and strain are
plotted against each other. The values of the stress are plotted as ordinates in vertical (Y-axis)

and values of strain as abscissas in horizontal axis (X-axis).

lg »|

]
Uniform elongation
Ly

Original gauge }
length

Fracture

Neck
T )

Total elongation | Post uniform elongation
Iy - —>

?C J

Fig. Typical diagram of tensile testing material specimen

Stress-strain curve for ductile material:

A representative/typical stress-strain (o-¢) diagram for ductile material (mild steel) is displayed

in the figure with salient points on the curve.

Stress is proportional to the strain up to the point A4, i.e., the stress-strain variation is linear. This
point represents limit of proportionality. Hooke’s law holds good up to this point. Slope of

stress-strain line from O to 4 gives the modulus of elasticity also known as Young’s modulus.
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Fig. Stress-strain diagram for ductile material

Beyond point 4 and up to point B, material remains elastic i.e., the material returns to its original
condition of the forces acting on it is removed. The stress corresponding to represents the stress
at elastic limit. If the specimen is stressed beyond point B, permanent set takes place and we
enter plastic deformation region. In the plastic deformation region, the strain does not get fully

removed even with the removal of the force causing it.

If the force is increased further, point ‘C” is reached where the test specimen elongates even
when the stress is not increased. This point is called yield point. In fact, there are two yield
points C and D which are called upper and lower yield points respectively. The stress

corresponding to the yield point is known as yield stress or yield strength.

With further straining, the effect of a phenomenon called strain hardening or work hardening
takes place.* The material becomes stronger and harder and its load bearing capacity increases.
The test specimen is therefore able to bear more stress. On progressively increasing the force
acting on the specimen, point E is reached. This point is the highest point in the stress-strain
curve and represents the point of maximum stress. It is, therefore, called ultimate tensile
strength (UTS) of the material. It is equal to the maximum load applied divided by the original

cross-sectional area (4o) of the test specimen.



After UTS point E, a sharp reduction in cross-sectional area of the test specimen takes place and
a “neck” is formed in the centre of the specimen. Ultimately the test specimen breaks in two
pieces as the neck becomes thinner and thinner. The point F represents the breaking point and
the corresponding stress is known as breaking stress or fractured stress. The actual breaking
stress is much higher than the UTS, if the reduced cross-sectional area of the test specimen is

taken into account.

As plastic deformation increases, the cross-sectional area of the specimen decreases. However
for calculation of the stress in the stress-strain graph, the original cross-sectional area is
considered. It is for this reason that the breaking point, ' seems to occur at a lower stress level

than the UTS point E.

The measure of the strength of a material is the ultimate tensile strength (o at point £). However,
from the design point of view, the yield point is more important as the designed structure should
withstand forces without yielding. Usually yield stress (c at point D) is two-thirds of the UTS

and this is referred to as yield-strength of the material.
Stress-strain curve for brittle material:

A

Proof stre Breaking point

W
wm

Stress(g) —»

0.2% strain

Strain(g)——»

Fig. Stress-strain curve for brittle material

A stress-strain curve for brittle material (cast iron) is obtained by subjecting a test bar of such

material in a tensile testing machine. The tensile load is gradually increased and the extension of



the test piece is recorded. The stress-strain curve for a brittle material is significantly different

from that for a ductile material. A typical stress-strain curve for a brittle material is shown in Fig.

This curve displays no yield point, and the test specimen breaks suddenly without any
appreciable necking or extension. In the absence of a yield point, concept of “proof-stress” has
been evolved for measuring yield strength of a brittle material. For example, 0.2% proof-stress
indicates the stress at which the test specimen ‘suffers’ a permanent elongation equal to 0.2% of

initial gauge length.

Percentage of elongation: Increase in length of tensile test sample expressed in percentage of
original length of the specimen is known as percentage of elongation or percentage of increase in
length. It has considerable significance in engineering because it indicates the ductility of the

material.

The ability of material to deform appreciably without rupture is known as ductility. It is a
measure of the amount of plastic deformation that a material goes through before it fails. It refers
to plastic deformation under tensile loads. Ductility enables the material to be drawn into wires.
Highly ductile metals can exhibit significant strain before fracturing, whereas brittle materials

frequently display very little strain. Ductility increases with temperature.

There are two common measures of ductility.

The first is the total elongation of the specimen, given by

. (l /a lo)
Percentage elongation (%) =__- x100
Iy
where /rand [y are the original and final length of the test specimen.

The second measure of ductility is the reduction of area, given by

(Af - Ao)
Ao

Reduction ©f area (%) = x100

where, Arand A4y are, respectively, the original and final (fracture) cross-sectional area of the test

specimen.



Reduction of area and elongation are generally interrelated. Thus, the ductility of a piece of chalk
is zero, because it does not stretch at all or reduce in cross section; by contrast, a ductile

specimen, such as putty or chewing gum, stretches and necks considerably before it fails.

Metals with more than 15% elongation at fracture are considered as ductile. Metals with 5 to
15% elongation are considered of intermediate ductility. However, the metals with less than 5%
elongation, i.e., strain of 0.05 are considered as brittle ones. Brittle materials include ceramic,

glass and some alloys. Cast iron is also classified as brittle.

Working stress: The maximum stress to which a structural member is ever allowed to subjected

to is called working stress. It should be below the elastic limit.

Ultimate stress: The maximum stress to which the material of the test piece is subjected to
during the test is known as ultimate stress or ultimate strength. It is obtained by the maximum

load to which the test piece is subjected to divided by the original cross-sectional area.

Factor of safety: the ratio of the ultimate stress to the working stress is called the factor of
safety. The value of factor of safety in engineering design varies from 3 (for accurately known
dead load) to 12 (for shock loads of indefinite magnitude).

Ultimate stress
Factor of safety =

Working stress

In case of ductile material, since excessive deformation creates problem in the performance of
the structural member, working stress is taken as a factor of yield stress or that of proof stress (if

yield stress doesn’t exists) in place of ultimate stress.
Factor of safety for steel is 1.85, for concrete it is 3.

True stress: it is the ratio of the load to the actual cross-sectional area of the test piece.

Engineering stress: It is the ratio of the load to the original cross-sectional area of the test piece.

It is also known as nominal stress.



Numerical Examples

1. An elastic rod 25 mm diameter, 200 mm long extends by 0.25 mm under a tensile load of 40

kN. Find the intensity of stress, strain and elastic modulus for the material of the rod.

Solution.  Given, Diameter of rod, d = 25 mm, Length, /=200 mm
Increase in length, 6/ = 0.25 mm, Load, P =40 kN =40,000 N
Arca, A = T d? = T x 252 = 490.87 mm*

4
Load P 40000 N

Intensity of stress, G = - =81.49 N / mm?
Area A 490.87 mm?
Strain, € =6_l _025 0.00125
[ 200
. E_S 8149
Elastic modulus, = = = =65,192 N/ mm?
e 0.00125

2. A steel rod of 25 mm diameter and 2 m long is subjected to an axial pull of 45 £N. Find the
(a) intensity of stress, (b) strain and (c) elongation. Take E = 2 x 10° N/mm?.

Solution.  Given, Diameter of rod, d =25 mm, Length, /=2 m =2000 mm
Load, P =45 kN = 45,000 N

E=2x10° N/mm*

Area, A = T a2 =& 252 — 490.87 mm?

4 4
Load P 45,000N

Intensity of stress,c = = =91.67 N/ mm*
Area A 490.87 mm?
Strain, & = _ 9107 _ 4 53,104 = 00004583
E 2x10°
Elongation =Strain x Original length =& x /=4.583x10~* x 2000
=0.916mm

3. A load of 4000 N has to be raised at the end of a steel wire. If the unit stress in the wire must
not exceed 80 N/mm’, what is the minimum diameter of the rod required? What will be the

extension of 3.5 m length of the wire? Take E = 2 x 10° N/mm?.

Solution.  Given, Length, /=3.5 m =3500 mm, Permissible stress = 80 N/mm?



Load to be raised, P=4000 N, E=2x 10° N/mm*

Let the minimum required diameter of rod = d

) T
Cross - sectional Area, 4 =" d?

4
Stress inthe wire, ¢ = —P = r_f4,000
\4)
For the wire to sustain the load, o < Permissibl e stress
N 4,000 <80
3
\ %)
N T 4000
4 40
= d> 1/ﬂ
T
= d>7.97mm
Elongation ,0 / = G_'l= 803500 =1.44mm
E 2x10°

4. A wooden tie in the figure is 60 mm wide, 120 mm deep and 1.5 m long. It is subjected to an
axial pull of 30 N. The stretch of the member is found to be 0.625 mm. Find the Young’s

modulus of the material.

30N y 0N

Solution.  Given, Length,/=1.5m=1500 mm, Width =60 mm
Depth = 120 mm, Pull, P=30 N

Increase in length, 6/ = 0.625 mm



Area of cross — section = Width x Depth = 60 x120
= 7200 mm?

PL _ 30x1500

E= = =10 N/ mm?
Ad1  7200x0.625

Young' s modulus,

5. A hollow steel column of external diameter 250 mm has to support an axial load of 2000 kN.
If the ultimate stress for the steel column is 480 N/mm?, find the internal diameter of the

column allowing a load factor of 4.

Solution.  Given, External diameter, D =250 mm, Axial load, P =2000 kN

Ultimate stress, ou = 480 N/mm?, Load factor = 4

Let the internal diameter of rod = d

Load factor = %
Safe stress
= Safestress = ___ = 120N / mm*
4
Safestress = P;: 2000 x1000 fe—d—»
A

Ex(ZSOz—dz) |a—— 250 r11 ——]
4
8100 @
= 120=
7112502—a’2 ) \rv"r/

I I
= (250, &) 8x10° i |
120 I |
= 250% —d? =21220.659 I
= d* =250 —21220.659 . '
= d? =41279.341 T
= d =203.173mm

6. The following data refers to the tensile test conducted on a mild steel bar.
1. Diameter of steel bar =3 mm
ii.  Gauge length =200 mm
iii.  Extension at a load of 100 AN = 0.139 mm
iv.  Load at elastic limit = 230 AN



v.  Maximum load = 360 kN
vi. Total extension = 56 mm

vil.  Diameter of rod at failure = 22.25 mm

Calculate (a) Young’s modulus, (b) the stress at elastic limit, (c) the percentage of elongation

and (d) the percentage decrease in area

Solution. Gauge length, /[, =200 mm, Diameter of the bar, d, = 30 mm

a) Young’s modulus.

nd > 1 x30°
Cross -sectional area, A=_ ° = = 706.86 mm*
4 4
P 100x1000
Stressatload (P=100kN),c =_=__ = 141.47N / mm?
A 706.86
Extension — 0.139 = 0.000695

Strain at load (P = 100 kN),& = ——
rain at load ( N).€ Original length 200

=9 14147

= =2.035%x10° N/ mm?
¢ 0.000695

Young' s modulus,

b) Stress at elastic limit.

Load at elastic limit, P. =230 kN
P, 230x1000

Stress at elastic limit, ©, = —
4 706.86

=325.383 N/ mm?*

c) Percentage of elongation.

Percentage of elongation = Total increase in length x100 = ——x100 = 28%
Gauge length 200

d) Percentage decrease in area.

Diameter of rod at failure, dr=22.5 mm

Decrease in area = T (d?>-d*) = T (302 —-22.5? )
;

4 ° 4
=309.250 mm?
D i 309.25
Percentage decreaein area = eereaseinarea 4 00 = x100
Gauge area 706.86

=43.74%



7. A steel rod of 28 mm diameter and 300 mm long is subjected to axial forces alternating
between a maximum compression of 16 AN and a maximum tension of 7 kN. Find the

difference between the greatest and least lengths of the rod. Take £ =210 GPa.

Solution. Given: Diameter of rod, d = 28 mm; Length of the rod, / = 300 mm

Axial compression, P. = 16 kN = 16000 N
Axial tension, P;=7 kN =7000 N
E =210 GPa =210 x 10° N/mm?

Area of cross — section, A = L d? = & x 28% = 615.75 mm*
4 4

a) When the rod is subjected to axial pull (tension)

Pl 7000x300
AE  615.75x210x10°
Greatest length aftere longation =300+ 0.016=300.016mm

Increase in length, 6 /1 = =0.016(+)

b) When the rod is subjected to axial push (compression)

Pl 16000 x 300
AE 61575 210x10°
Least length aftere compressio n =300 —0.037 =299.963 mm
Difference between th e greatest and least length =300.016 —299.963
=0.053mm

Increase in length, 6 /> = =0.037(-)

8. A straight bar of brass having cross-sectional area of 500 mm? is subjected to axial forces as

shown in the figure.

A B C D
100 kN «—————— > 80 kv ——»— A e 30KV

—>| 500 mm |<—1000 mm—>|<— 1200 mm—>|

Find the total elongation of the bar. Take E = 80 GPa.
Solution. Given: Cross-sectional area, 4 = 500 mm?, E = 80 GPa = 80 x 10° N/mm*

For the sake of simplicity, the bar may be considered to be comprised of thee portions, AB, BC

and CD. The elongation or contractions of each of the three portions are computed separately.



Equilibrium of each portion of the bar is considered for computation of the elongation or

contraction.

A B
100 kN «—————— —

(80 + 50 -30) =100/

B C (50 - 30) =20 kN
e >

(100 - 80) =20 kN

= D I0EN
_.,. ___________ .‘—
(80 + 50 -100) = 30 kN
Portion AB: AB is subjected to a tensile force of 100 kN
Pl 100x1000x 500
Elongation of AB,§ 45 = —— = . . =1.25mm(+)
AE 500 x 80 %1000
Portion BC: BC is subjected to a tensile force of 20 kN
P,l,  20x1000x1000
Elongation of BC,8 pc = ——= = . . =0.5mm(+)
AE  500x 80x1000
Portion BC: BC is subjected to a tensile force of 20 kN
Pyl 1 12
Contractionof CD,8cp = —= = 30x1000x1200 _ 0.9mm(-)

AE 500 x 80 %1000

Total elongation ,0 =0 ;; +0 5 +0 =1.25+0.5-0.9=0.85mm



Complex stresses

In real life, except for a few simple cases, the structural components and machine parts are not as
simple, that they would be subjected only to one dimensional (uniaxial force) stress. Instead,
components of machineries and structural elements of large and complex civil engineering
structures are most likely to be subjected to complex three dimensional stress systems due to the
system of forces acting on them. In such situations, the analysis and failure of the structural

elements involve analysis of complex stresses.

Even when subjected to uniaxial stress, instead of failure at the plane, normal to the force, the
component may fail due to yielding at a different plane due to induced shear stress exceeding the

permissible shear stress of the material of the member.

Hence, it is not always the case that the plane normal or parallel to the force would experience
the maximum stress. The element under direct tension or compression will experience shear

stress and that under shear stress will experience normal stress albeit at different planes.

To obtain a complete picture of the stresses in a bar, we must consider the stresses acting on an

“inclined” (as opposed to a “normal”) section through the bar.

Inclined section Wertical section

Because the stresses are the same throughout the entire bar, the stresses on the sections are

uniformly distributed.
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P = B
D a— Nommal section 3
‘_ 3
S o
‘_ 5
(@)
P 3 P
‘_
Inclined section
®)
Fig. 2

Stresses in an oblique plane due to uniaxial normal stress:

In the previous section, we were computing the stresses on a plane when the force was either
normal to the plane or tangential to it. In other words, the plane of interest was either normal to

the force or parallel to it.

A,= A sect

(b) (©)
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In this section, the stresses on an oblique plane, i.e. plane making some angle (0) with the

vertical plane, will be dealt with. The normal stress on the vertical plane (perpendicular to the

force)is © = 1%4 , where P is the force and A is the area of cross-section of the plane.

In figure (b), however, there are two components of the force, one normal to the oblique plane
(P,) and the other tangential to the plane (P;). Hence, the oblique plane will experience two
stresses, one normal stress (0,) and the other tangential stress or shear stress (z,). The stress

components can be calculated by dividing the respective forces with the area of the oblique

plane.
Normal force perpendicular to the oblique plane, P, = PcosH
Shear force tangential to the oblique plane, P,=Psin0
. A
Area of the oblique plane, A, = = AsecO
cos0
F .
Normal stress, oo = I _ Pcos® _ PcosB.cosd
A, Asecb A
=0 cos’0 (1)
) _F,  Psin® PsinB cosO
Tangential or shear stress, To =—= =
A, Asecb A
=92 sin 20 )

Thus, an oblique plane in a member under axial force will have two components of stresses on it,

one normal to the plane while the other is tangential.

The stresses on the inclined plane, therefore, are not simply the resolutions of g, perpendicular
and tangential to that plane. The direct stress, gy has a maximum value of ¢, when 6 = 0° whilst

the shear stress 7, has a maximum value of ¢/2, when 6 = 45°,
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Thus, a material whose yield stress in shear is less than half that in tension or compression will

yield initially in shear under the action of direct tensile or compressive forces.

Stresses in an oblique plane under pure shear stress system:

Consider a rectangular stressed element shown in Fig. 4 to which shear stresses (7.,) have been
applied on the vertical sides so as to produce counterclockwise rotation. Complementary shear
stresses of equal magnitude (7,x) but of opposite sense are then set up on the horizontal sides in

order to prevent rotation of the element and to keep it in equilibrium.

N ———yx

Txy

Fig. 4 Pure shear system

A A
Te Tg A secH
l ) Og l 0 609 A secH
o
Txy C 2 ” c

Ry TyxAtanf «——

(a) Stresses (b) Forces
Fig. 5 Free body diagramof triangular prism

Consider the equilibrium of the triangular prism element in Fig. 5.

Resolving the forces along the direction normal to the plane AC, we have
oo .AsecO =1 ,,4sin0 +1  Atan0 cosO

Go =T Sin 0 cosO + T, sin O cosO
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=27, sin 0 cosH

The maximum value of o is 7, when 0 = 45°,

Resolving the forces along the plane AC, we have

10 .AsecO +71 , Atan0O sin® =1, AcosO
T0.secO =1, cosO —1 , tan0O sin O
To =T,,c0s°0 -1 sin’0
='cxy(cosze—sin29)
=T x C0s20 )]

The maximum value of 74, is 7, when 0 = 0° or 90° and it has a value of zero when 6 = 45° i.e.

on the planes of maximum direct stress.

Tay

Fig. 6

Further consideration of eqn. (3) shows that the system of pure shear stresses produces an
equivalent direct stress system as shown in Fig., one set compressive and one tensile, each at 45°
to the original shear directions, and equal in magnitude to the applied shear.

Stresses in an oblique plane under biaxial normal stress system:

Consider the rectangular element as shown in Fig. 7 subjected to a system of two direct stresses,

both tensile, at right angles, o, and a,.

For equilibrium of the portion ABC, resolving the forces perpendicular to AC,
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Tg A secB
Cg A secB

O, Atan®

(a) Stresses (b) Forces
Fig.8 Free body diagramof triangular prism

Consider the equilibrium of the triangular prism element in Fig. 8.

Resolving the forces along the direction normal to the plane AC, we have
o6 .Asecld =c  A4.cos0 +c  Atan0.sin 0O

Go =G ,cos°0 +0 sin’0

c
=G_x(1+c0529)+ ~"(1-cos20)
2 2
G. .-G
_Ox*Oy T T 0s20 (5)
2 2

Resolving the forces along the plane AC, we have

10 .4AsecO +c ,4sin® =c  Atan0.cosO

Page 6



10 .secl =—c,sin0 + o, tan0.cosO
To =—GC xsin O cosO + G, sin 0.cosO
= —(Gx -c y)sin 0 cosO

(0 -0 )

=—-—"2%in 20 (6)

The maximum direct stress will equal oy or g,, whichever is the greater, when 6 = 0 or 90°. The
maximum shear stress occurs in the plane when 6 = 45°,

(0 -0 )

T =——21 _ ¥%4in20

max

Stresses in an oblique plane under general two-dimensional stress system:

Consider a rectangular prism of uniform cross-sectional area under bi-axial/ two-dimensional

stress as shown in the Fig 9.

Txy

Txy B| &
Tyx +——

v O,

Fig.9 Rectangular block under two-dimensional stress

Sign convention:

1. Angle of obliquity is measured in counter-clockwise direction with respect to vertical
plane; the reference plane is taken as positive.

2. Tensile stress is taken as positive and compressive stress as negative.

3. Shear stress on vertical reference plane producing anticlockwise rotation is taken as

positive.
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0 Te Tg A secH
0:_1_ Og G:it Gg A secB
L Try 4
C Tx 1 = 2 - €
- v O, Tz A0 1 O, Atanf
(a) Stresses (b) Forces

Fig.10 Free body diagramof triangular prism

Consider the equilibrium of the triangular prism element in Fig. 10.

Resolving the forces along the direction normal to the plane AC, we have
co.4secO =0 A.cosO +1,,4sin0 +c ,Atan0.sinO +1  AtanO cosO
Go =G, c0s’0 +G sin’0 +7  sin O cosO +7 . sinO cosd
=G ,cos’0 +G sin?0 + 21 sin6 cosd

= G_"(kcosze )+ i (1-cos20 )+t sin20
2 2 Y

G p—
_Ox+0y
2 2

G y
cos20 +1 . sin 20 )

Resolving the forces along the plane AC, we have
10 .Asec0 +G,A4sin0 +1 , AtanOsin0 =c ,Atan0.cosO +1, AcosO
T0.sec0=—c  sin0 —7 , tanOsin O + o, tan0.cosO +1, cosO
To =—G ,sinB cos® —t |, sin’0 +0, sinB.cosO +1 , cos’ O

:_(Gx —Gy)sine cosO +1 (COSZG —Sinze)

Page 8



=— x—zV—sin 20 +71,, cos20 ®)

The maximum and minimum normal stresses (o; and og2) are known as the principal stresses.
The maximum and minimum normal stresses (o; and ¢2) which occur on any plane in the member

can now be determined as follows:

. . dco
For oy to be a maximum or minimum, E =0
G.—0C
Gx + Gy X y .
We have Gy = > + 5 €0s20 +1 . Sin 20
doce ( .
B o} —G},)sm29+2‘rwcos29=0

Since we are dealing with maximum and minimum normal stresses (principal stress), let us
denote this angle as 6,. The above equation can be written as,

2Ty
tan20, = 9
p (—)Gx o, )

There are two values of 26, in the range 0-360°, with values differing by 180°. There are two
values of 6, in the range 0-180°, with values differing by 90°. So, the planes on which the
maximum and minimum normal stresses act are mutually perpendicular and are known as

principal planes.

We can now solve for the principal stresses by substituting for 8, in the normal stress equation

for oy.

From triangle I and II of Fig. 11,

in20, =+ il
sin20, =+
g \/(Gx —csy)2 +4t]
(c o)
c0s20, = —

+
\/(Gx —Gy)Z +4rﬁy
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26+180

/ 2Txy

/
-(0y - 0y) |

II

-2Txy

Fig. 11

Substituting the values of 6, in (1), the maximum and minimum normal stresses are given by

5 _0.+0, +(Gx _Gy) (Gx—csy) i 2t,,

- 22 \/(Gx —Gy)z +4t? 7 \/(Gx —Gy)z +4t]
o _OxtOy (Gx—cy)2+4tfy

v 2 \/(Gx —Gy)z+4rfy
o, Z%(%cy)rﬂ(q -0, J +4t} (10)

We have derived the maximum and minimum values of the normal stresses denoted as oy

(maximum) and o> (minimum).

To find out which principal stress is associated with which principal angle, we could use the

equations for sin 6, and cos 6, or for oy.

Similarly substituting the value of 8, in eqn. (8),

] _(Gx _G‘) 2T, e (Gx —Gy)
R TN ey e S R

Ty =0

P

Hence, the shear stresses are zero on the principal planes.
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Now let us find out the maximum value of the shear stress. Differentiate eqn. (8) with respect to

6 and equate it to zero. We get,

(G -o
v _ —”—V—).ZCOSZG -2t _sin20 =0
o 2 N

(0 -0 )
T, sin20 =—x—2”—.00526

Since we are dealing with shear, let us denote this angle as 6;. The above equation can be written
as,
tan 20 :_(c’x -5, (11)
‘ 2t
There are two values of 26, in the range 0-360°, with values differing by 180°. There are two

values of 6, in the range 0-180°, with values differing by 90°. So, the planes on which the

maximum shear stresses act are mutually perpendicular.

Because shear stresses on perpendicular planes have equal magnitudes, the maximum positive

and negative shear stresses differ only in sign.

Comparing the equation (4) for 6; with that the equation (5) for 6,, it is observed that both are

reciprocal of each other. So we can write,

tan 20, = — =—cot20,

tan 20,
tan 20 = tan(90+29p)
0, =45+0,

So, the planes of maximum shear stress (s) occur at 45° to the principal planes (6,). We have
therefore derived maximum & minimum values of principal stresses, their angles, maximum

values of shear stress and its orientation with respect to principal planes.

Further, from triangle I and II of Fig. 12,
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(Ux = 0—)‘)

-(0y - gy)

Fig. 12

Substituting the values of 6 in (2), the maximum and minimum shear stresses are given by

. :i(GX _Gy)‘ (GX_Gy) . 2Ty
- 2 \/(Gx —csy)2 +dr ) \/(Gx —Gy)z +4rfy
(Gx_cy)2+4rfy

1
=+ - - 472
Tmax * 2\/(0x—6y)2+4'[jy +2\/(Gx G,V)Z + TXJ’

T, . = J_r%\/(csx —csy)Z +at?

In a structural member under biaxial complex stress system, there exist two mutually
perpendicular planes on which the normal stress is either maximum or minimum. These planes

are known as principal planes. The shear stress on these planes is zero.

1
A little observation will show that,t ,, — t E(Gl -0, ), where G, andG, are principal stresses.
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Further, it can be seen that the sum of the principal stresses is same as the sum of the normal

stresses in any two mutually perpendicular directions.
G,+0,=06,+0,

Transformation of stress coordinates:

There exists only one intrinsic/fundamental state of stress at a point in a stressed body akin to the
position of a point on a plane. As the coordinates of a point (x, y) on a plane changes with the
orientation of coordinate axes of reference, so does the stress coordinates (o, 7) of a point in a
stressed body (with respect to the plane of reference) with the orientation of its plane of

consideration.

Fig. 13

‘A’ is a point on a plane with coordinates axes OX and OY as shown in Fig. 13. The coordinates
of 4 is (x, y). If the orientation of axes of reference OX and OY is changed by an angle of 6 in
counterclockwise direction, then the position is not going to be changed. Instead its coordinates

(x1, 1) in respect of changed coordinate axes will change.
d =disance of 4 from the origin O of the plane

¢ =angular distance of Afrom the origin O of the plane

x=dcosh,y=dsind
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x,=dcos(¢—0),y,=dsin(¢p-0)

It is evident that only the coordinates of the point and not its inherent position depends on the
orientation of the axes of reference. Similarly, regardless of the orientation of the element used to
portray the state of stress, the intrinsic state of stress remains the same. In other words the stress

coordinates (o, 7) and not the inherent state of stress of a point change.
Member subjected to principal stresses:
Mohr’s circle:

Mohr’s circle is a graphical representation of stress transformation equations. The equations of
stress transformation describe a circle if normal stress and shear stress are represented as abscissa
and ordinate respectively. Each point on the circumference of Mohr’s circle represents a plane
through the centre of the circle and the coordinates (o, 7) of the point represents the normal stress

(o) and shear stress (7) on the given plane.

Mohr’s circle can be drawn from a given state of stress at a point in a structural member.

Consider a stress element representing the state of stress at a point as shown in the Fig. 14.

Ux'_f [ 1_;:&

T

W 4—
L U.L
Fig. 14

Stress transformation equations for normal and tangential components on a plane are given by

G —
O x +GC X y
Normal stress on the plane, Go = 5 L+ 2 c0s20 +1 . Sin 20 (12)
(Gx —Gy) ‘
Shear stress on the plane, Tg = - sin 20 +71 y, cos 20 (13)
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Rearranging the equation (12), we have

Gx+6y :Gx_
2 2

6}’
Gy — c0s20 4T in 29 (14)

Squaring both sides of equation (13) and (14) and adding them together, we have

.. . . . (Gx—‘rcy \ . (Gx-’_Gy\) 2
This is the equation of a circle with centre KT’O | and radius R= [l 2| 41 . and

2 )
this circle is known as Mohr’s circle named after the German Civil Engineer Otto Mohr (1835-

1918). It provides a simple and clear picture of an otherwise complicated analysis.

Procedure for drawing Mohr’s circle:

1. Draw coordinates axes in Cartesian coordinate system with O as origin, normal stress (o)

as abscissa (positive to the right) and shear stress (7) as ordinate (positive downward).

(ci+0 y 3
2. Locate the centre C of the circle at the point having coordinates| T,O .

)

3. Locate point 4, representing the state of stress on the vertical plane, i.e., face x of the
element by plotting its coordinates oy and 7. Point 4 on the circle corresponds to 6 = 0°
and represents the vertical plane.

4. Locate point B, representing the state of stress on the horizontal plane, i.e., face y of the
element by plotting its coordinates o, and -7. Point 4 on the circle corresponds to 6 = 90°
and represents the horizontal plane.

5. Join 4B so as to intersect the normal stress axis at C.

6. With the point C as the centre and CA4 (= CB) as radius, draw Mohr’s circle through

points 4 and B. This is the required Mohr’s circle which has radius R.
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Shear stress (T)

"T'

E Tmax
-T (Og+ 90, To+90)

8 =6+90

y Positive(+) downward

Fig. 15 Mohr's circle

Every point on the circumference of the circle then represents a state of stress on some plane

through C.

The stress state on an inclined plane with an angle 6 is represented at point D on the Mohr's

circle, which is measured an angle 26 counter- clockwise from point 4 to show the coordinate at

Consider any point D on the circumference of the circle, such that CD makes an angle 26 with

CA, and drop a perpendicular from D to meet the ¢ axisat D’.

Coordinates of D:

OD'= OC + CD'= %(Gx +cy)+Rcos(29p —29)
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1
= E(Gx +Gy)+RC0529p c0s20 + Rsin 20 , sin 20

Xy

1
But Rcos20, ZE(GX —G},) and Rsin20, =1

Therefore, OD'= %(Gx +0, )"’% (({C -o, )cos 20 +7, sin 20

On inspection this is seen to be eqn. (12) for the normal stress Go on the plane inclined at é to

the vertical plane AB.
Similarly, DD'= Rsin (26 ,—20 )

DD'=Rsin 20 ,cos 20 — Rcos 20 , sin 20
=
DD'= - 5 S —Gy)sin29+rxy cos 20

Again, on inspection this is seen to be eqn. (13) for the shear stress T¢ on the plane inclined at 6

to the vertical plane 4B.

Thus the coordinates of @ are the normal and shear stresses on a plane inclined at 8 to AB in the

original stress system.
Characteristics of Mohr’s circle

1. The direct stress is maximum when D is at P;, i.e. OP; is the length representing the
maximum principal stress a1 and 26, gives the angle of the plane 6,, from AB. Similarly,
OP:;, 1s the other principal stress.

2. The maximum shear stress is given by the highest point on the circle and is represented
by the radius of the circle. This follows since shear stresses and complementary shear
stresses have the same value; therefore the centre of the circle will always lie on the o-

axis midway between o, and o,.
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3. From the above point the direct stress on the plane of maximum shear must be midway

1
between oy and oy, 1.e. _(G +0C )
2 7

4. The shear stress on the principal planes is zero.

5. Since the resultant of two stresses at 90° can be found from the parallelogram of vectors
as the diagonal, as shown in Fig. 13.10, the resultant stress on the plane at 6 to 4B is
given by OD on Mohr’s circle.

6. Comparing the Mohr's circle and the stress element, it is observed points Si and S>
representing the points of maximum and minimum shear stresses, are located on the
circle at 90° from points P; and P; i.e. the planes of maximum and minimum shear stress

are at 45° to the principal planes, and

The graphical method of solution of complex stress problems using Mohr’s circle is a very
powerful technique since all the information relating to any plane within the stressed element is
contained in the single construction. It thus provides a convenient and rapid means of solution

which is less prone to arithmetical errors and is highly recommended.
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Numerical

1. A material has permissible stresses in tension, compression and shear as 30 N/mm?, 90
N/mm?* and 25 N/mm? respectively. If specimens of diameter 20 mm are tested in tension and

compression, identify the failure surfaces and failure load.
Solution:

Case I (Test in tension): 1f subjected to full tensile strength,

Maximum tensile stress, &, =30N /mm?

30

_V_ 2 2
Corresponding maximum stress in shear, T, =-—=—=13N [mm® < 25N /mm

2 2
Hence, the failure will occur due to tension. The maximum tensile stress is in the axial direction.

Hence failure will occur on the plane of axial tensile stress, i.e., at right angle to the stress.

Corresponding tensile force, P, = Area of specimen x tensile strength
_ ixo = x202x30
"4

=9224.778 N

Case Il (Test in compression):

Maximum compressive stress, 6, = 90 N/ mm?

O, =?:45N/mm2 > 25N/ mm?

2

Corresponding maximum stress in shear,T , =

Hence, the failure will occur due to shear. The failure will occur on the plane at 45 to the plane

of axial stress.

Corresponding compressive stress causing shear failure, 6 ., =2x25=50N/ mm?

Corresponding compressive force, P, = Area of specimen x compressiv estress
T
= AXG ., =" X202X50
of 4

=15707.93 N
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2. Normal stresses acting at a point in a strained material are 100 N/mm? compressive and 60

N/mm? tensile as shown in the figure. Find the stresses on the given oblique plane.

60 N/mm”
3 a3
100 Nimm™ 100 Nimm™
—> -—
25"
|
l 60 N/mm”™
Solution: Sign convention: R R
Define the stresses in terms of the sign convention: S .
6, =-100MPa, ¢ , = 60 MPa g TVE
Angle of orientation of plane of plane AC, 6 = - 65°
(clockwise) < >

¥
Sign convention

G J—
. (e} X +0O y X y
Normal stress on the oblique plane, o = + c0s20

2 2

_ —100+60+—100—60
B 2 2

cos 2(— 65° )
= 20-80cos(-130° )

=31.423 N/ mm* (tensile)

(Gx—cy)

Shear stress on the oblique plane, 19 = ———————sin 20
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_{=100-60) sin 2(— 650)

2
= 80sin (— 130" )

=—61.284 N/ mm? (Clockwise )

Resultant stress on the plane, G , = \/692 +r62 = \/3 1.4322 +(—61.284)?

= 68.87 N/ mm®
o) 31.423)
Angle of obliquity, ¢ = tan | [=tan ' 61.284
Y \ )
=27.14°

3. The state of plane stress at a point is represented by the stress element below. Determine the

stresses acting on plane oriented 30° clockwise with respect to the vertical plane.

450 MPa
+
80 }-[E’a% 80 MPa
25 MPa
N
¥ 50 MPa
Solution: Sign convention:
4 4
N
._f gh, Tve %.
- >
v

Sign convention
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Define the stresses in terms of the sign convention:

6,=-80MPa, 6 ,=50MPa andt, =-25MPa

Angle of orientation of plane, 8= - 30°

Oy +Gy +Gx_

o
y
Normal stress on the given plane, Gg = cos20 +1 . Sin 20

2 2
800 780730 s 2(=30)+ (- 25)sin 2(- 30)
2 2
= 730 7130 os(= 60) - 25sin (- 60)
2 2

=—15-65c0s(~— 60)—25sin (- 60)
= 15 - 65cos(~ 60) — 25sin (- 60)

= —25.9 MPa (Compressio n)

Ozl 180 MPa
Tg

Shear stress on the oblique plane, T =— (Gx ~9y )sin 20 +1 cos20
0
2 xy

_(80-50) o 2(=30° )+ (= 25)cos 2(-30°)
2
= 65xsin (- 60°)-25cos(— 60°)

=—68.80 MPa (Clockwise )
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4. Example: The state of plane stress at a point is represented by the stress element below.

Determine the principal stresses and draw the corresponding stress element.

4 50 MPa
.‘_
80 MPa 80 MPa
25 MPa
—
¥ S50 MPa
Solution:
Sign convention:
n n
—
‘—f gh, TVve ‘I_.
P — »
¥

Sign convention
Define the stresses in terms of the sign convention:

o, =—-80MPa, G, = 50 MPa and T, = —25 MPa

Angle of orientation of plane, 6= - 30°

1
Principal stresses, 0, — D) (Gx +0y )i %\/(Gx - Gy)z +4t f)

_ 15(_ 80+ 50)+ %\/(_ 80— 50)" +4(-25)’

= —151%\/(—130)2+4x625
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=—-15+69.64
c,=54.64MPa and ¢ ,=—-84.64 MPa

2 —
Angle of principal plane, tan20, = (G Ty )= ( 2550 255)0)
x—O y - -

tan 20, = 0.3846
20, =21.0°and 21.0° +180°

0, =10.5° and 100.5°

Check for which angle goes with which principal stress. Put @ = 10.5° in the stress equation,

G. -G
_OxF0y L7 T 00820 +1 sin 20
Xy

Gy = D) 2
= 790730, 7070 c0s2(10.5" )+ (- 25)sin 2(10.5° )
2 2
=—84.6 MPa

G, = 54.64 MPa with® ,, =100.5°

G, =—-84.64 MPa with® , =10.5°

e

54.64 MPa

86.64 MPa

34.64 MPa

5. A point in a stressed structural member is subjected to a tensile stress of 90 N/mm?* on a

horizontal plane and compressive stress of 50 N/mm? on the vertical plane. There is a shear
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stress of 45 N/mm?* such that when on vertical plane, it tends to rotate the member in
counterclockwise direction. Determine the maximum shear stress and also the resultant stress
on the planes of maximum shear stresses.

Solution:

4 90 N/mm”

—

50 N/mm® % 50 N/mm">

45 Nimm®> <1

¥ 90 N/mm’

Define the stresses in terms of the sign convention:

6,=-50MPa, 6,=90MPa and~t, =45MPa

Angle of orientation of plane, 8= - 30°

) 1
Maximum shear stress, T __ = —\/ (G - )2 +412
max 2 X y Xy

1
= 5 \/(_ 50— 90)2 +45% =73.53 N/ mm? (counterclockwise)

Inclination of plane of maximum shear to the vertical plane,

(6.-6,)  (=50-90)
tan295 == = -
2T, 2% 45

tan 20 =—1.555
20, = tan~'(1.555) = 57.26" and 237.26°
0, =28.63° and 118.63°  (counterclockwise)

Normal stress on plane of maximum shear stress,
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_- 50+90 LT 50-90 0052(28.630 )+ 45sin 2(28.630 )

n 2 2

=20 N/ mm?

v

.,
Tmex = 73,53 N/mm™

2
Tp = 76.20 N//mm"~
= 14.70"
: 2

Resultant stress on the plane, G , = \/092 +T, = V20 +73.53?

=76.20 N/ mm?
_1( G ) _1( 20 )
¢=tan | __ [=tan
\Tmax ) K ' )
=14.70°

Summary
1. The normal stress ¢ and shear stress T on oblique planes resulting from direct loading are

Go =0 cos’0

v =2 sin 20
L)

2. The stresses on oblique planes owing to a complex stress system are:

Gi+Gy  ©
2 2

y
Normal stress, Go = c0s20 +1 . Sin 20

Normal stress, T = — (Gx I )sin 20+t cos20
0 ~ )
2 Xy
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3. The principal stresses (i.e. the maximum and minimum direct stresses) are then

Gy, :%(Gx +Gy)i%\/(0x —csy)2 +dt ]

and these occur on planes at an angle 6, to the vertical plane on which o, acts, given by

either

2Ty

tan20 , =
P (Gx_Gyi

where g, = o or g, the planes being termed principal planes. The principal planes are always at

90° to each other, and the planes of maximum shear are then located at 45° to them.

4. The maximum shear stress is

T, :i%\/(cx —Gy)2+4rjy
T :ii(c -c )
max 2 1 2

. 1
5. Normal stress on plane of maximum shear = KO‘ +0 )
2 F g
6. Shear stress on plane of maximum direct stress (principal plane) = 0
7. Inproblems where the principal stress in the third dimension o3 either is known or can be

assumed to be zero, the true maximum shear stress is then

1
_(greatestprincipal stress — least principal stress)
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Bending Stress

When a beam is loaded with external loads, all the sections of the beam will experience bending
moments and shear forces. The shear forces and bending moments at various sections of the
beam can be evaluated as discussed in the earlier chapter. In this chapter, the bending and

bending stress distribution across a section will be dealt with.
Some practical applications of bending stress shall also be dealt with. These are

1. Moment carrying capacity of a section
Evaluation of extreme normal stresses due to bending

Design of beam for bending

> » D

Evaluation of load bearing capacity of the beam

The major stresses induced due to bending are normal stresses of tension and compression. But
the state of stress within the beam includes shear stresses due to the shear force in addition to the
major normal stresses due to bending although the former are generally of smaller order when

compared to the latter.

Compression Load

% 7/ j/ =S :“T
/ Tension

(a) Simply suppored beam

Compression

(b) Cantilever

Fig. 1

Simple Bending or Pure Bending

A beam or a part of it is said to be in a state of pure bending when it bends under the action of

uniform/constant bending moment, without any shear force.

Alternatively, a portion of a beam is said to be in a state of simple bending or pure bending when
the shear force over that portion is zero. In that case there is no chance of shear stress in the

beam. But, the stress that will propagate in the beam as a result will be known as normal stress.



However, in practice, when a beam is subjected to transverse loads, the bending moment at a
section is accompanied by shear force. But, it is generally observed that the shear force is zero
where the bending moment is maximum. Therefore, the condition of pure bending or simple

bending is deemed to be satisfied at that section.
Examples of pure bending are —

1. Bending of simple supported beam due to end coupling (Uniform pure bending)
2. Bending of cantilever beam with end moment (Uniform pure bending)
3. Bending of the portion between two equal point loads in a simple supported beam with

two-point loading (Non-uniform pure bending)

The four point bending of the simply supported beam

(a) Simple supported beam with end coupling

+ve Moment

(b) Bending moment diagram

Fig. 2

M A§ )
G 5

M

(a) Cantilever subjected to moment at its end

- ve Moment

(b) Bending moment diagram

Fig. 3



(a) Simply supported beam with two-point loading

F

-F
(b) Shear force diagram

Pa

/ Pure bending

{c) Bending moment diagram

Fig 4

Theory of Simple Bending

The theory which deals with the determination of stresses at a section of a beam due to pure
bending is called theory of simple bending. In this chapter, bending of straight homogeneous
beams of uniform cross sectional area with vertical axis of symmetry shall be considered. The
application of this theory can be extended to beams with two or more different materials as well

as curved beams.
Several cross-sections of beams satisfying the above conditions are shown in the Fig. 5.

A beam of rectangular cross-section with typical loading condition is shown in the Fig. 6. Also
shown in the Fig. 7 is the three-dimensional beam with longitudinal vertical plane of symmetry,

with the cross-section symmetric about this plane. It is assumed that the loading and supports are



also symmetric about this plane. With these conditions, the beam has no tendency to twist and

will undergo bending only.

}

Fig.5 Beam cross-sections with vertical axis of symmetry

A beam subjected to sagging moment is shown in the Fig. 8. The beam is imagined to be
consisting of a number of longitudinal fibres; one such fibre is is shown in colour. It is obvious
that the fibres near the upper side of the beam are compressed; hence an element in the upper
part is under compression. The fibres at the bottom side of the beam get stretched and, hence, the
elements on the lower side are subjected to tension. Somewhere in between, there will be a plane
where the fibres are subjected to neither tension nor compression. Such a plane is termed as

neutral surface or neutral plane.

In the conventional coordinate system attached to the beam in Fig. 8, x axis is the longitudinal
axis of the beam, the y axis is in the transverse direction and the longitudinal plane of symmetry

is in the x- y plane, also called the plane of bending.

Neutral Surface

The longitudinal surface of a beam under bending which experiences neither tension nor

compression is known as neutral surface. There is only one neutral surface in a beam.



Neutral Axis

The line of intersection of transverse section of beam with the neutral surface is known as neutral
axis. In other words, the line of intersection of the longitudinal plane of symmetry and the neutral

surface is known as neutral axis. Neutral axis experiences no extension or contraction.

Point load
1]
| l | []
& A Cross section

Eoller support Pin support

Fig. 6 Loaded beam

L 1

z

Longitudinal plane
of symmetry

Fig.7 Longitudinal plane of symmetry

Vertical axis of symmetry
Fibres contracting

M
Neutral axis
Neutral surf: \
S R Fibres extending
Z
(a) Coordinate system (b) Longitudinal section (c) Cross-section

Fig. 8 Pure moment (sagging)



Fig. 9 Plane of bending

Axis of beam

The intersection of the longitudinal plane of symmetry and the neutral surface is called the axis
of the beam. In other words, the line through the centroid of all the cross-sections of the beam is

known as axis of the beam.
Assumptions for theory of pure bending:

The assumptions made in the theory of simple bending are as follows:

1. The material of the beam is perfectly homogeneous (i.e. of the same kind throughout) and
isotropic (i.e. of same elastic properties in all directions).

2. The material is stressed within elastic limit and obeys Hooke's law.

3. The value of modulus of elasticity for the material is same in tension and compression.

4. The beam is subjected to pure bending and therefore bends in the form of an arc of a
circle.

5. The transverse sections, which are plane and normal to the longitudinal axis before
bending, remain plane and normal to the longitudinal axis of the beam after bending.

6. The radius of curvature of the bent axis of the beam is large compared to the dimensions
of the section of beam.

7. Each layer of the beam is free to expand or contract independently.

8. The cross-sectional area is symmetric about an axis perpendicular to the neutral axis.

Explanation of the assumptions



According to assumption No. 5, plane section ABCD before bending as shown in Fig. 10 remains
plane after bending as shown by A’B’C’D’. This assumption, also known as Bernoulli’s
assumption, is perfectly valid for beams with pure bending. If there is any shear along with the
bending, the shear deformation distorts the plane and 4’B’ will not remain plane. However, for
beams with smaller depth (d<1/10th span) shear deformation is small and this assumption is not

much affected. In case of deep beams, with shear forces, this assumption fails.

Assumption No. 6, the radius of curvature is large compared to depth is valid if deflections are
less than 1/10th to 1/5th of depth of beam. Therefore, the theory derived with this assumption
may be called small deflection theory.

B

|
e 1
3/*’?“‘76““,}/

] D
(a) Before bending

Fig. 10

Relationship between Bending Stress and Radius of Curvature

Consider a part of beam ABCD of length dx subjected to pure bending of bending moment M as

shown in the Fig. 11. As the beam is subjected to pure bending, it bends into a circular arc.

The topmost layer 4B is contracted to 4’B’. The layer PQ below it is compressed to a lesser
degree than it. The bottom most layer CD is elongated to C’D’. All other layers are subjected to
different degrees of elongation or contraction degrees depending upon their position. However,
one layer MN has not suffered any change in its length. This layer is called the neutral layer or

neutral surface.

Let d6 be the angle formed by the planes 4’C’ and B’D’ and R be the radius of the neutral layer.
Consider a fibre PQ at a distance of y from the neutral layer.

Original length of the fibre, PQ = dx = Rdf

After deformation, the length of the fibre is compressed to P’Q’.



M | p Q |
| R s N
C D '
fe— it —— — v =Rl —
(a) Beam before bending (b) Beam after bending

Fig. 11

Decrease in length of the fibre PO = PQ - P'Q'’
= RdO — (R - y)d0O
=ydd

Let the projection of C’ 4’ and D’ B’ meet at O.

Strain in the fibre PQ, e = Decrease in length
Original length
ydo _y
E="—==—
RdO R

Let o be the stress in the fibre PQ.

c
Then, €= £ where E is the Modulus of elasticity of the material.
c
E R
E
.0 =_XYy
R



Hence, the stress intensity in any fibre is proportional to the distance of the fibre from the neutral

layer.
Position of Neutral Axis

Consider a beam of arbitrary cross-section as shown in the Fig. 12. Consider an elemental are da

at a distance y from the neutral axis. Let the bending stress on the element be o.

Fig. 12

Force on the elemental area = ¢ da

Force over the entire cross-section of the beam = ZG da
E
We also know, ¢ = EX v

Substituting the value of o, we get

. . E E
Force over the entire cross-section of the beam = Z “yoa=" Z voa
R R

Since there is no axial force on the beam, from equilibrium consideration, the above axial force

should be zero.

E
Hence, Z yda=0
R
Since, _ 1s constant for a given section, we have Z y8a=0
R

We know, Ay = Z yoa
Where, A is the area of cross-section of the beam.

So, A5=0



or y=0

y 1is the distance of the centroid from the neutral axis. Hence, the neutral axis of the section
coincides with the centroid of the section. Thus, to locate the neutral axis of a section, the
centroid of the section should be determined. The line passing through the centroid, parallel to

the plane of bending is the neutral axis of the beam section.
Relationship between Moment and Radius of Curvature

Consider an elemental area da from the neutral axis of a beam section as shown in the Fig. 13.

E
The stress on the elemental area, G = Ey

E
Force on the elemental are G da = _ yda
R

Moment of resistance offered by this elemental area about the neutral axis

E
= (_yf)a\y = EyZSa
R ) R

Total moment of resistance, M offered by the cross-sectional area of beam,

M :zﬁyZSa

M:nyZSa

But, Z y*8a is the moment of inertia / of the beam section about the neutral axis.

E
M=_1
R
M _E
1 R
E
We have earlier seen that, 2_=
y R

Combining the two equations, we get

E S
M _o_ __, which is known as the bending equation.

I y R



Maximum compressive stress

ocmax/

Mazximum tensile stress

(a) Cross section (b) Stress distribution diagram
Fig. 13
Where, M = bending moment at a section,

I=moment of inertia of the beam section,
o = stress at any layer of the beam,
y = distance of the layer from the neutral axis,
E =Young’s Modulus and
R =radius of curvature.
M and I are constants for a particular beam section. Hence, ¢ varies proportionally to the distance
. So, maximum stress occurs at extreme fibres. The stress distribution will be triangular as

shown in the Fig. 13.

M
B Bending axis
/ % y
Longitudinal axis /
Al

C
- X
s

Fig 14

The formula for flexural stress derived as above applies only to cases where the material behaves
elastically. The important concepts used in deriving the flexural formula may be summed up as

follows.



1. Strains in different layers of beam vary linearly with their distances from the neutral axis.
2. Properties of materials are used to relate strain and stress.
3. Equilibrium conditions are used to locate the neutral axis and to determine the internal

stresses.

The internal bending moment developed by the induced flexural stresses due to bending at a
section is known as moment of resistance of the section. For equilibrium of the section, the

moment of resistance of a section should be equal to or greater than the applied external moment.

Flexural rigidity:

From equation of flexure, we have

M
I

= | B

El = MR

EI is known as flexural rigidity. Flexural rigidity is the measure of flexural strength of a beam
section. Higher is the flexural rigidity better is the flexural strength. It depends upon the material
as well as the geometric property of the section. Elastic modulus, E reflects the material

character and moment of inertia, / reflects the geometric characteristic
Economical section
In a beam of rectangular or circular section, the fibres near neutral axis are under-stressed

compared to those at the top and bottom. As a result, a large portion of the beam cross-section

remains under-stressed and under utilized for resisting flexure or bending.

| |

i Ay |

| ! A=1A 1A,

- _!_ ..... - ] .i_ ________ —

! A = Ih>14

! Al

: :

| |

(a) Rectangular section (b) I-section

Fig. 15



(0]

~ Iindicates that moment of resistance of a section can be greatly
y

The expression M =

increased by increasing the moment of inertia by rearranging or redistributing the area while
keeping the cross-sectional area and the depth of the beam unchanged. This can be achieved by

changing the geometry of the section so as to spread the area farther from the neutral axis.

In order to increase the moment of resistance to bending of a beam section, it is advisable to use
sections which have large area away from the neutral axis. Hence, I-section and T-sections are

preferable to rectangular section.

Sections of different geometry, (i) rectangular section and (ii) I-section of equal cross-sectional

area and same depth are shown in the Fig. 15.

Moment carrying capacity of a section:

From equation of flexure, we have

c M

b% I
M

cC=_Y
I

It is obvious that bending stress is maximum on the extreme fibre at the top and bottom of the

beam where y is maximum. In design of beam, the extreme fibre stress should not be allowed to

exceed the allowable or permissible stress of the material. If © is the allowable stress for

allow

bending, then for safe design

c <o

max allow

M

ymax Ny allow

1
If M is taken as the maximum moment carrying capacity of the section,

M

Vimax Ny allow

1



I
M<——00

max

allow

The moment of inertia / and the extreme fibre distance ymax are the geometrical properties of the

section. The ration of the moment of inertia and the extreme fibre distance (I /v ) for a given

max

cross-section of beam is constant and is known as section modulus (Z). Thus the moment

carrying capacity of a beam is given by
M =0 allowZ

If 6 aw 1n tension and compression are same, doubly symmetric section is selected. Doubly

symmetric section means a section which is symmetric about the vertical as well as neutral axis.
If G anow 1n tension and compression are different, un-symmetric cross-section is selected such

that the distance to the extreme fibers are nearly the same ratio as the respective allowable
stresses. In the latter case, the moment carrying capacity in tension and compression are found
separately and the smaller one is taken as the moment carrying capacity of the section.

Section Modulus of Sections of Standard Geometry

1. Rectangular section

Let us consider a rectangular section of width b and depth d as shown in the Fig. The neutral axis
coincides with the centroidal axis of the beam.

- )]

|

—r—

Fig 16
. . . bd3
Moment of inertia about the neutral axis, / = —
. ) d
Distance of outermost fibre from the neutral axis, y =
max 2

z- 1 bd® 2

_ X —

Ve 12 d

Section modulus,



=lbd2

6
Let ¢ is the maximum bending stress developed at the outermost layer.

1
Moment of resistance, M =0Z = ngd 2

2. Hollow Rectangular section

Let us consider a hollow rectangular section of size B x D with a symmetrical opening bxd as

shown in the Fig. 17.

Vs =+D.-’2 T T

B S P I . |l__4d D

~ b - lL

Fig. 17
3 3
Moment of inertia about the neutral axis, j _ BD _ %
12 12
. . D
Distance of outermost fibre from the neutral axis, ¥y = __
max 2
I 3 3
Section modulus, Z= _BD’-bd” 2
_1(BD*-bd?)
6 D

Let ¢ is the maximum bending stress developed at the outermost layer.

M =cZ =lc5 (BD® —bd*)

Moment of resistance,
6 D

3. Circular section

Let us consider a circular section of diameter d as shown in the Fig. 18.
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Fig. 18
nd*
Moment of inertia about the neutral axis, / = E
. . d
Distance of outermost fibre from the neutral axis, ¥ = __
max 2
1 4
Section modulus, z=__ _md” % 2
Vinax 64 d
_nd?
32
Let ¢ is the maximum bending stress developed at the outermost layer.
nd?
Moment of resistance, M =0Z =G 5y

4. Hollow Circular section

Let us consider a hollow circular section of external and internal diameter D and d respectively

-t T
Ymax = D2
|

R B T AT D

as shown in the Fig. 19.

o —

Fig. 19

I
Moment of inertia about the neutral axis, { = 6 (D4 ~d* )



. . D
Distance of outermost fibre from the neutral axis, y =

~ 7
Section modulus, 7 = R l(D4 -d* )Xi
Ve 04 D

=L(D4 —d4)

32D

Let ¢ is the maximum bending stress developed at the outermost layer.

on
Moment of resistance, M =0Z = 32D(D4 -d 4)

Design of beam for bending

Design of beam involves the determination of the size (cross-section) of the beam for given
loading condition. The maximum bending moment of the beam is determined from the loading
condition. Given the bending moment and permissible bending stress of the material of the beam,
the section modulus of the beam is determined from the expression of bending stress. Once the
section modulus is known, width and depth can easily determined assuming the depth to width

ratio.
Beam of uniform strength

In practice, a beam of uniform cross section is designed for moment of resistance same as the
maximum bending moment that the beam is supposed to carry. Hence, the material in all sections
except the section of maximum bending moment remains under-stressed and underutilized.
Although practical, such a beam is uneconomical. Ideally, a beam of varying cross-section
should be designed so that all sections attain the maximum permissible stress simultaneously. A
beam in which permissible stress at all sections is reached simultaneously under a given loading,

is called a beam of uniform strength.

A beam of uniform strength can be obtained in different ways

a) By varying the width of beam and keeping the depth constant
b) By varying the depth of beam and keeping the width constant
c) By varying both width and depth

By varying the width of beam and keeping the depth constant



Derive the formula for cross section of a rectangular beam of uniform strength for a cantilever

beam of length L carrying concentrated load at free end by keeping the depth constant.

Consider a cantilever beam of length L and uniform depth d carrying a concentrated load W at its
free end as shown in the Fig. 20. Let the width varies from a minimum at its free end to a

maximum of b near the fixed end.

It is obvious that the bending moment varies from minimum zero at the free end to maximum at

WL at the fixed support.

Bending moment at any section at a distance of x from the free end,

M =Wx

/ ;
= T
/|
Y
VY
< - L — =
A
i_h,
Fig. 20
From expression of flexure, we xhave
M =cZ
Wx=cZ

Where ¢ is the maximum stress at every section of the beam.

b d?
If b, width at any section XX, then 7 — x6




O = =
bd*> b.d?
6
. . 6WL
Similarly, maximum stress at support, G = ¥E
Equating equation () and (), we have
6Wx _ 6WL
b.d> bd’
be_ [ X)
—\T)
At free end, i.e., x =0, the width of beam by =0
(L)

At the fixed end, i.e., x = L, the width b, = bkjg =b
)

By varying the depth of beam and keeping the width constant

Consider a cantilever beam of length L and uniform width b carrying a concentrated load W at its

free end as shown in the Fig. 20. Let the depth varies from a minimum at its free end to a

maximum of d near the fixed end.

-

]

ey
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I T
d dx

g |
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Fig. 21
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It is obvious that the bending moment varies from minimum zero at the free end to maximum at

WL at the fixed support.

Bending moment at any section at a distance of x from the free end,
M =Wx

From expression of flexure, we xhave
M =cZ
Wx=cZ

Where ¢ is the maximum stress at every section of the beam.

bd*
If b, width at any section XX, then 7 — <

c= Wx _ 6Wx
bd’>  bd?
6

Similarly, maximum stress at support, G =

bd*
Equating equation () and (), we have
6Wx 6WL
bd?  bd*

At free end, i.e., x =0, the depth of beam, d, =0

L
At the fixed end, i.e., x =L, the depth, d, =d (Z] =d



Numerical

1. A rectangular beam of breadth 100 mm and depth 200 mm is simply supported over a span of
4 m. The beam is loaded with an uniformly distributed load of 5 AN/m over the entire span.

Find the maximum bending stresses.

Solution:
Breadth of the beam, 5 = 100 mm

Depth of beam, d =200 mm

1 1
Moment of inertia, / = —bd’> = —x100x (200) = 66.67 x10° mm’*

12 12
Span of beam, /=4 m

Uniformly distributed load, w= 5 kN/m

wi?

. . 5x4?
Maximum bending moment at centre of beam, M = o = 2

=10kN.M =107 N.mm

(a) Cross section of beam (b) Bending stress distribution
Fig 22
Neutral axis passes through the centroid of section.

The distance of top and bottom fibre from the neutral axis, y = 100 mm

M 7
Thus, maximum bending stress, G = __ y 10

%100
17T 66.67x100



=15N/ mm?

2. A beam of I-section shown in Fig. 23 is simply supported over a span of 10 m. It carries a

uniform load of 4 kN/m over the entire span. Evaluate the maximum bending stresses.

Solution:

1 1
Moment of inertia, /= A(BD3 —bd’ ) = (300 x 660° — 280 x 600 )
12 12

=21.474%10% mm*

Span of the beam, /=10 m

Uniformly distributed load, w= 4 kN/m

————— ] b = 660 mm
|=— 300 mm —=] 7.68 N/mm"
(a) Cross section of beam (b) Bending stress distribution
Fig 23
4x10?
Maximum bending moment at centre of beam, M = =50kN.m
= 5x107 N.mm

Neutral axis passes through the centroid of I-section.

The distance of top and bottom fibre from the neutral axis, y = 330 mm



5x10’

Thus, maximum bending stress, ¢ = Ai y=— _
21.474x10®

x330=7.68 N/ mm?

The bending stress at top and bottom fibres = 7.68x10% N/ mm?

3. A beam of an I-section shown in Fig. 24 is simply supported over a span of 4 m. Find the
uniformly distributed load the beam can carry if the bending stress is not to exceed 100

N/mm?.

Solution:

I 1
Moment of inertia, /= —(BD* —bd*)= _(200x300° —180x260° )
12 12

=180.36x10° mm*
Maximum bending stress, Gmax = 100 N/mrn?
Span of beam, [ =4 m

Extreme fibre distance, ymax = 150 mm

1
| | 20 mm
20mm_:\‘_ _T: _|7

SNSRI | _ . (IR M T | G

l

| | 30

|<—200mm—>| T -

Fig. 24

I 180.36 x10°
ymax 150

Section modulus, Z= =1242400 mm’

Maximum bending moment, M =G max Z =100x1242400

=124240000 N.mm



=124.24 kN.m

2
But m=Ye
8
2
124.24 = wx (4)°
8
e 12424 kNI m
16

The maximum uniformly distributed load the beam can carry = 64.12 kN/m.

4. A timber beam of rectangular section carries a load of 2 kN at mid-span. The beam is simply
supported over a span of 3.6 m. If the depth of section is to be twice the breadth, and the
bending stress is not to exceed 9 N/mrn?, determine the cross-sectional dimensions.

Solution:

Span of the beam, / = 3.6 m

Uniformly distributed load, w=2 kN

Allowable bending stress, Galiow = 9 N/mm*

WL 2x3.6
Maximum bending moment at centre of beam, M = ___ = 8 =1.8kN.m
4 4
=1.8x10% N.mm
. . M
From the flexural relationship, we have Z=——0o
Gallow
lbdz — 18 X106
6 9
1.8x10°
bd? = =22 w6 =1.2x10°

Depth of section is to be twice the breadth, i.e., d =2b

So, we have b(2b)* =1.2x10°



6
b’ =% =0.3x10°

b=64.94mm
d=2x64.943 =129.886 mm

Therefore, width of beam = 65 mm, and depth of beam = 130 mm

5. A rectangular beam of width 200 mm and depth 300 mm is simply supported over a span of 5
m. Find the safe uniformly distributed load that the beam can carry per metre length if the

allowable bending stress in the beam is 100 N/mm?.

Solution:

Span of beam, /=5 m

Width Breadth of the beam, b = 100 mm
Depth of beam, d =200 mm

Allowable bending stress, daliow = 100 N/mm?

. 1 1
Section modulus, Z=_bd*=_x200x300%> =3x10° mm’
6 2

Moment of resistance of the beam, M = , Z =100x3x10°

allow

=300x10° N.mm = 300kN.m

Maximum bending moment at the centre of the beam,

So, the load that the beam can carry is 96 kN/m.



6. A rectangular beam of size 60 mm x 100 mm has a central rectangular hole of size 15 mm x
20 mm. The beam is subjected to bending and the maximum bending stress is limited to 100

N/mm?. Find the moment of resistance of the hollow beam section.
Solution:
External dimension of hollow rectangular beam: B = 60 mm, D = 100 mm

Size of the central hole: 6 =15 mm, d =20 mm

1 1
Moment of inertia of the hollow beam section, 7 = E(BD }—bd’ ) = o (60 x100° —15x 20 )

= 4.999 x10° mm*

Fig 25
100
Extreme fibre distance, y,, = - =50mm
: I 4.999x10°
Section modulus, /= = 5(: =9.98x10* mm3
ymax

Allowable bending stress, daliow = 100 N/mm?

Moment of resistance, M =c , 7 =100x9.98x10*

allow

=9.98x10° N.mm

=9.98kN.mm



7. Find the ratio of the dimensions of the strongest rectangular beam that can be cut from a

circular log of wood of diameter D.
Solution:

Let b be the width and d the depth of the strongest rectangular beam section as shown in the Fig.
26.

From the geometry, we have b*> +d?* = D?
d>=D? P
Section modulus of the rectangular section,

z="pa2 = Tp(p2—p?)
6 6

_ (02— p)
6

Strongest section in bending should have largest section modulus.

&,
Ve
o

Fig. 26
dz 1
Hence, —= —(D2 _3b2)= 0
db 6
3b% = D?
D
b=—



2
And d=~\D>-p = p-2

8. Two sections of same material; one of solid circular section and the other hollow circular
section of internal diameter half the external diameter, have the same flexural strength.

Which one of them is economical?

Solution:

Let D = Diameter of solid circular section
D1 = Outer diameter of hollow circular section

Inside diameter of hollow circular section, D> = 0.5 D

®10:

(a) Solid section (b) Hollow section
Fig. 27
Section modulus of solid section, £ L 3_2D3
. . R ( 4 4 ) T { 4 4 }
Section modulus of hollow section, Z - D1 - 02 = 11) - (O.SDI)
32D, 32D,
= T-x0.9375D°
32 !

Since both sections have same flexural strength, their section modulus should be equal.

Hence, T py = T20.9375D°

32 32 !



D? =0.9375D}
D =0.98D;

I

. o4 :
- = s = D
eSS SSeianrhAns PheRih ety =4 1 4 L = {p* W ¢}

" 4(D1 _Dz) 1 1

D? . (DY
= 9752 = 095 x| — |
| \ D)

1

98) =12
s x (0.98) 8

Since the sectional area of hollow section is less than that of solid section, for a given length of

the beam, the weight of hollow section will be less. Hence hollow section is economical.

9. A cantilever of 2 m length and square section 200 mm x 200 mm, just fails in bending when a
point load of 12 AN is placed at its free end. A beam of rectangular cross section of same
material, 150 mm wide and 300 mm deep, is simply supported over a span of 3 m. Calculate

the maximum concentrated load that the beam can carry at its centre without failure.

Solution:

The two beams with loading conditions are shown in the Fig.

12 kN w

l 150

fo—2m — ] 200 .57 P 300
200 l—15m—sfe—1.5m—s|

(a) Cantilever (b) Simply supported beam

~

Fig. 28
Maximum bending moment in cantilever beam, M, =12x2 =24kN.m

=24 x10° N.mm



. ) . _ 2
Let allow is the stress at which the beam fails, M, =5 , Z= —bd"c

allow 6 allow
1 2
g x 2002007 xo allow — 24 X106
G, = 18N/ mm?

allow

Let W kN be the maximum central concentrated that the beam can carry without failure.

WL Wx3

Maximum bending moment at the mid span, M =0.75W kN.m

sS4 4
=0.75x10° W N.mm

Moment of resistance of simply supported beam section,

M =6 Z=18x i><150><3002

R allow 6
=40.5x10° N.mm
Equating maximum bending moment (Ms) to moment of resistance (Mr), we have
0.75x10° W = 40.5x10°
W =54kN
10. For a given sectional area, compare the moments of resistance of circular and square section.

Solution:

Let the diameter of the circular section be d.

T
Area of circular section, Ad=""d
F
Section modulus, Z =""4d3
32

Let the square section has side of a.

Since both circular and square section have the same area,

azzﬂdz
4

az*ﬁd

2



& mn
d

Section modulus of square section, 7, = — =
48

Ratio of Section modulus of square section and circular section,

T pE

Zs o 48 © _ g
ZC £d3
32

Hence, flexural strength of square section is 1.18 times more than that of circular section of equal

arca.

11. Compare the moments of resistance of a square section of given material when the beam

section is placed such that (i) two sides are parallel and (ii) one diagonal vertical.
Solution:
Square section with two sides horizontal is shown in the Fig. 29(a).
Section modulus of square section with two sides horizontal, Z, = a4
Let o is the permissible flexural stress.

ca
Moment of resistance, M, =cZ, = o

9 T

P
_*_3' T \/ cI.-"'j\.'rE
. a< N A
5 B VA )
al? a .._.-_“‘Ilr2
Y 1 T
(a) Sides parallel (b) Diagonal vertical
Fig. 29

Square section with on diagonal vertical is shown in the Fig. 29(b).

Moment of inertia about the neutral axis, i.e., the diagonal of the square section = Twice the

moment of inertia of triangle of base V2a and height a/ J2.



Extreme fibre distance, Vmax = 5 T 5

a4
2 ymax a 12

V26 dd

12

Moment of resistance, M, =cZ, =

Ration of the moments of resistance of section in two different positions,

3

oca
M
L6 __ h-1414
M2 \/20613

12

12. Three beams of same material with circular, square and rectangular cross sections have the
same length and are subjected to same maximum bending moment. The depth of the

rectangular section is twice the width. Compare their weights.
Solution:

Fig. 30 shows three different sections, circular, square, and rectangular of beam.

~—b—

i .

|

a

|

(a) Circular section (b) Square section (c) Rectanglar section

Fig. 30

|—-—"~J
[ o)




Let

Diameter of circular section = d,

Side of square section = a, and

Width and depth of rectangular section are b and 2b respectively.

As beams of three different cross sections of equal allowable stress are subjected same maximum

bending moment, they must have same strength. Hence, all sections should have equal section

modulii.

. . . d?
Section modulus of circular section, Z. = 713—2
(13
Section modulus of circular section, Zg = i
b(2b)* 2
Section modulus of circular section, Z, = p = 553
d3 3 _ 2
We have r_2 ="p
32 6 3
d =1.193a and b =0.6299a
nd* ,
Weight of circular beam  Area of circular section ~—4— T (d)

~Weight of square-beanm = ~Area-of square-section— = > =7l

Weight of rectangula r beam

—Weight o square-bearm— =

E4(1.193)3=1.118

Area of rectangula r section 20 b)\?

—Apea-oﬁsqua;e-secngn—:#—zz(a|
)

=2(0.6299) =0.7936

13. A beam of symmetric /-section has flange size 100 mm x 15 mm, overall depth 250 mm.

Thickness of web is 8 mm. Compare the flexural strength of this section with that of a beam

of rectangular section of same material and area. The width of rectangular section is two-

third of its depth.

Solution:

The I-section and the rectangular section of equal area are shown in the Fig. 31.



Area of I-section, 4, = (2x100x15)+(220x8) = 4760 mm?

100x 250° 92 x 220°
Moment of inertia of /-section, /, = . .

= 4.8574 mm*
12 12

1 4.8574x107
Section modulus of /-section, Z, = 5 = 8512; 0

= 388592 mm’

15 mm | |
T

8 mim

B .

[
L

!
|

(a) I-section (b) Bctangular section
Fig. 31
Let the depth of the rectangular section = d mm
Width of the rectangular section, b = 2 d

. 2
Area of the rectangular section, 4 dxd="d*

3

2
Since the area of two sections are equal, —¢ ? = 4760

R

3
2
3

d =84.50mm

2

b=_x84.50=56.33mm
3

and

bd* : 4.50)°
Section modulus of rectangular section, Z, = % _ 3633x (8 > )

B 6

= 67035mm’



Flexural strength of I - section 7, 388592

5.80

Flexural strength of rectangula rsection ~ Z, 67035

14. A cast iron beam of an /-section with top flange 80 mm x 40 mm, bottom flange 160 mm x 40

2

mm and web 120 mm x 20 mm. If the tensile stress is not to exceed 30 N/mm*~ and

compressive stress 90 N/mm?, what is the maximum uniformly distributed load the beam can

carry over a simply supported span of 6 m, if the bottom flange is in tension?
Solution:
The cross section of the beam is as shown in the Fig. 32.

Let yis the distance of the centroid (neutral axis) from the bottom fibre (tension fibre).

i | 80 mm ] Oc = 42.268 N/mm’

40mm

Fig. 32

E a,y, 160x40x20+20x120x100+80x40x180

<

A 80x 40 +20x120 + 80 x 40 x120
44
= w =78.67mm
12000

Moment of inertia,

1 1
I=_x160x40° +160x40x (78.67—20)" + __ x20x120> +20x120x (100 - 78.67)’
12 12

1
+ 5% 80 40° +80x 40 x (180—78.67)°

= 60138670 mm*



Tension occurs at the bottom and compression at the top.

Bottom extreme fibre distance (large flange, tension flange), y, =78.67mm

Top extreme fibre distance (compression flange), y.=200—78.67=121.33mm

Moment of resistance from tensile strength consideration,

60138670

_o L =30x 72717 = 22933266.81N.mm
allow yt 78.67
= 22.933kN.m

Moment of resistance from compressive strength consideration,

60138670

o L =90x "7 - 44609579.65 N.mm
ay 121.33
= 44.609 kN.m

Hence, actual moment resistance is smaller of the above two, i.e., 22.993 kN

12 6
Maximum bending moment, = % = W;

=4.5w

Equating the maximum bending moment with the moment of resistance, we have
4.5w=22.933
w=15.096kN/m
Alternatively,
Suppose the maximum stress in compression at the top is 90 N/mm?.

Corresponding maximum stress in tension at the bottom,

o =""xc _T1867 o
Coy, ¢ 12133

=58.355>30N/mm* (Not possible)

But the permissible tensile stress is only 30 N/mm?. Hence, let the maximum tensile stress be

allowed to reach 30 N/mm?.



Corresponding maximum compressive stress at the top,

6 =7°xs 12133

————x3

y, L 7867

4

= 42268 N /mm* < 90N/ mm* (OK)

Hence, the beam will fail in tension at the bottom flange.

Moment of resistance from tensile strength consideration,

60138670
o, L =302 =22933266.81N.mm
oy 78.67
= 22.933kN.m

w_lz_ wx 62

8

Maximum bending moment, = =4.5w

Equating the maximum bending moment with the moment of resistance, we have
4.5w=22.933

w=5.096 kN /m

15. Two wooden planks 60 mm x 160 mm each are connected together to form a cross section of
a beam as shown in the Fig. If a sagging bending moment of 3500 N.m is applied about the
horizontal axis, find the stresses at the extreme fibre of the cross-section. Also calculate the

total tensile force on the cross-section.

|4—160mm—>|_l_

60 mm

¥

160 mm

1

e

60 mm

Fig.



Solution:

Let us locate the centroid and hence the neutral axis, and find moment of inertia of the section.
Consider the bottom of T-section as the reference axis for location of centroid. The T-section

consists of two components, web and flange.
The relevant calculations are shown in the table.
Distance of the centroidal axis GG from the bottom edge,

a
Y= Z 4 = 2610000 =135.94 mm

da 19200
Moment of inertia at the bottom edge, 7, = ZI sy T Z:ay2

=23.36x10° + 408 x10° = 431.36x10° mm*

le—160 mm | L Coma = 3.861 Nimm®

60 mm _T_
T 84 06 mm
160 mim 4*;
AL 13594 mm
e Ot mae = 6.245 Ni/mm
60 nmum
Figz.

But, I,=1 4+ )
I,=1,~ (3 a)y? = 431.36x10° —19200x135.942

=76190074.88 mm*

Let the maximum tensile and compressive stresses at extreme fibres be oguma and oemax

respectively.



Components | Areaa Centroidal ay ay? Iseif
(mm?) | distance from (mm?) (mm®) (mm®)
the bottom
edge, y
(mm)
Web 9600 80 786000 61.44 x 10° 3
001607 _ 50 48x10¢
12
Flange 9600 190 1824000 346.56 x 10° 3
s 100x60" _ » ggx10°
12
Total 19200 2610000 408 x 10° 23.36 x 10°
M
We have, Crm 7, =Mx135.94
1 76190074.88
=6.245N/ mm?
M
o =My 3500x1000 o, o
¢ 1 76190074.88

=3.861N/mm*

Total tensile force = Average tensile stress x area of tensile zone

6245

x (135.94x 60) = 25468.359 N

16. A water main of 1000 mm internal diameter and 10 mm thickness is running full. If the

bending stress is not to exceed 56 N/mm?, find the greatest span on which the pipe may be

freely supported. Steel and water weigh 76800 N/m> and 10000 N/m?> respectively.

Solution:

Internal diameter of the pipe, d = 1000 mm =1 m
External diameter of pipe, D = 1000 + 2 x 10 = 1020 mm = 1.02 m

Consider 1 m length of the water main.

Area of the pipe section, 4= I (D2 -d? ) _— (1.022 - 12)

4 4
= 0.03173m>







1020 mm

|4—1[i[}ﬂmm—.1

510 mm

510 mm

Fig.
T T
Area of the water section, 4="d*> =" x1?
4 4
= 0.7854 mm*

Weight of one metre length of pipe =0.03173 x 1 x 76800 = 2493.978 N
Weight of water in one metre length of the pipe = 0.7854 x 1 x 10000 = 7854 N
Total load on the pipe per metre run = 2493.978 + 7854 = 10347.978 N

Let the maximum span of the pipe / m.

wi?  10347.9781> 2
Maximum bending moment, M = = =1293.497] N.m
8
=1293.497 x1000/% N.mm

Moment of inertia of the pipe section about the neutral axis,

1="(p*-a*)="-(1020* -1000*)
64 64

= 4046.379x10° mm*

M
We know, 20

Iy
1293.497x1000/*> 56

4046.379 x10° 510




6
2= 56 x4046.379 x10 _ 343.494

 510x1293.497 x1000

[ =18.533m



Shear Force and Bending Moment

TYPES OF FORCES: Basically, structural members experience two types of forces.

External Forces: Actions of other bodies on the structure under consideration are known as

external forces.

Internal Forces: Forces and couples exerted on a member or portion of the structure by the rest

of the structure. Internal forces always occur in equal but opposite pairs.

TYPES OF LOAD

The following are the important types of load which act on a beam.

1. Concentrated or point load,
2. Uniformly distributed load, and
3. Uniformly varying load
1. Concentrated or Point Load: Load acting at a point or over very limited area compared to

the length of the beam is known as concentrated load or point load.

Concentrated load
or

«—a 4,1 Point load

A i
i

Fig. 1

2. Uniformly Distributed Load: Load that is spread over a beam with uniform rate of loading,
(‘w’ per unit run) is known as uniformly distributed load or UDL. Uniformly distributed load

is also known as rectangular load.



|-‘ ? >| w kN unit len
ooy .

A

Fig. 2

3. Uniformly Varying Load: Load that is spread over a beam with the rate of loading
uniformly from one point to the other along the beam is known as uniformly varying load.

Uniformly varying distributed load is also known as triangular load.

w KN/ unit length

Fo—a —+
- L ——f

Fig 3

4. Parabolic Load: If the variation of load distribution follows the equation of parabola, it is

known as parabolic distributed load or simply parabolic load.

w kIN/ unit length e parabolic load

774? B

TYPES OF SUPPORTS

1. Simple support
2. Roller Support



3. Pin (or) Hinge Support
4. Fixed support

Simple Supports

Simple support is just a support on which structural member rests. It is idealized to be a
frictionless surface support. It only resists vertical movement of support. A simple support is free
to rotate and translate along the surface upon which it rests. The resulting reaction force is

always a single force perpendicular to the plane of support.

The horizontal or lateral movement allowed is up to a limited extent and after that the structure
loses its support. For example, if a plank is laid across gap to provide a bridge, it is assumed that
the plank will remain in its place. It will do so until a foot kicks it or moves it. At that moment
the plank will move because the simple connection cannot develop any resistance to the lateral

load.

This type of support is not commonly used in structural purposes. However, Simple supports are

often found in zones of frequent seismic activity.
Roller Supports

Roller supports are free to rotate and translate along the surface upon which they rest. The
surface can be horizontal, vertical, or sloped at any angle. They cannot resist parallel or
horizontal forces and moment. They only resist perpendicular forces. Hence, the resulting

reaction force is always a single force that is perpendicular to the plane of support.

This type of support is provided at one end of bridge spans. The reason for providing roller
support at one end is to allow contraction or expansion of bridge deck with respect to
temperature differences in atmosphere. If roller support is not provided then it will cause severe
damage to the banks of bridge. But this horizontal force should be resisted by at least one support

to provide stability so, roller support should be provided at one end only not at both ends.

Pinned Supports

A pinned support is same as hinged support. It can resist both vertical and horizontal forces but

not a moment. It allows the structural member to rotate, but not to translate in any direction.



Many connections are assumed to be pinned connections even though they might resist a small
amount of moment in reality. It is also true that a pinned connection could allow rotation in only
one direction; providing resistance to rotation in any other direction. In human body knee is the
best example of hinged support as it allows rotation in only one direction and resists lateral
movements. Ideal pinned and fixed supports are rarely found in practice, but beams supported on
walls or simply connected to other steel beams are regarded as pinned. The distribution of

moments and shear forces is influenced by the support condition.

Best example for hinged support is door leaf which only rotates about its vertical axis without

any horizontal or vertical movement.

Fixed Supports

Fixed support can resist vertical and horizontal forces as well as moment since they restrain both
rotation and translation. They are also known as rigid support for the stability of a structure there
should be one fixed support. A flagpole at concrete base is common example of fixed support In
RCC structures the steel reinforcement of a beam is embedded in a column to produce a fixed
support as shown in above image. Similarly all the riveted and welded joints in steel structure are
the examples of fixed supports Riveted connection are not very much common now a days due to

the introduction of bolted joints.

Table 1. Idealized Structural Supports

Types of Real life Example Symbol Movement allowed Unknown reactions
supports and prevented

Frictionless [ | Prevented: vertical
or Simple y/ / / /" / /% translation
support Allowed: horizontal T_
translation and RIE a'm“;l normal to
rotation plane of support
Roller Prevented: vertical
support translation

Allowed: horizontal
translation and

. Feaction normal to
rotation plane of support




Pinned or Prevented: horizontal
hinged translation and vertical H
support translation -
. Honz
Allowed: Rotation v
Vertical
Fixed or Prevented: horizontal Moment
Built-in translation, vertical it
support t i H
uppo ransllatlon and Hotisont
rotation
v
Vertical
BEAM:

A Beam is defined as a structural member subjected to transverse shear loads (load normal to the
axis of the beam) during its functionality. Due to the transverse shear loads, a beam is subjected
to variable shear force and bending moment. Beam is a flexural member, designed primarily for
bending. Analysis of beam pertains to the calculations of shear forces and bending moments

along the length of the beam and drawing of shear force diagram and bending moment diagram.

TYPES OF BEAMS: Depending upon the degrees of freedom and support conditions beams are

of various types.

Beams

! !

Statically determinate beam Statically indeterminate beam

Number of reactions in the beam is
equal to number of useful static
equations of equilibrium

l l l

Cantilever Simply Overhanging
beam supported beam
beam

Number of reactions in the beam is
more than number of useful static
equations of equilibrium

1 l l

Fixed beam Propped Continuous
Cantilever beam
beam




Statically Determinate Beam

A beam is said to be statically determinate if all its reaction components can be calculated by

applying three conditions of static equilibrium.
Statically Indeterminate Beam

When the number of unknown reaction components exceeds the static conditions of equilibrium,
the beam is said to be statically indeterminate. To determine the unknown reactions additional

equations of deformations are required.

The following are the important types of beam

1. Cantilever beam,

2. Simply supported beam,

3. Overhanging beam,

4. Fixed beams, and

5. Continuous beam.
1. Cantilever beam
A beam which is fixed or built into a rigid support at one end and free at the other end is known
as cantilever beam. Such beam is shown in Fig. The built-in support prevents displacements as

well as rotations of the end of the beam. Cantilever is statically determinate.

N
3 |

3
]

Fig 5 Cantilever beam

2. Simply Supported beam
A beam supported or resting freely on the supports at its both ends is known as simply supported
beam. Such beam is shown in Fig. The end supports are free to rotate and have no moment of

resistance. Simply supported beam is statically determinate beam.



A #
]

Fig 6 Simply supported beam

3. Overhanging Beam

A beam supported over two supports and extended beyond one or both the supports is known as
overhanging beam. An overhanging beam, shown in Fig., is supported by a pin and a roller
support, with one or both ends of the beam extending beyond the supports. It is a statically

determinate beam.

=

Fig 7 Overhanging beam

4. Fixed Beam
A beam with both ends fixed or built into the supports or walls, is known as fixed beam. Such
beam is shown in Fig. A fixed beam is also known as a built-in or encastred beam. It is a

statically indeterminate beam.

Y il

L —

T LA

Fig.§ Fixed beam

5. Propped cantilever beam
A beam with one end fixed and the other end simply supported over a roller is known as propped

cantilever beam or simply propped cantilever. Propped cantilever is statically indeterminate.



sl

Fig.9 Propped cantilever
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6. Continuous Beam
A beam which is supported over more than two supports is known as continuous beam.

Continuous beam is also statically indeterminate.

Fig 10 Continuous beam

SHEAR FORCE AND BENDING MOMENT:

The beams transfer the transverse (vertical) loads to the supports. In the process of load transfer,

they experience shear force and bending moments.

Fig.11 Shearing off beam



Shear force at any section of a beam is defined as the net or unbalanced vertical force on either
side of the section. 1t is the algebraic sum of vertical components of all the forces acting on the
beam on either left side or right side of the section. The effect of shear force is to shear off or cut

the member at a section. It is similar to the effect of scissor cutting the page of paper.

(b) Bent beam

oy i

(V+8V)

v (M+3M)

==

(V+8V)
(c) Equilibrium of element

Fig 11 Bending of beam

The moment which tends to bend the beam in plane of load is known as bending moment. In
other word bending moment at any section of a beam is the net or unbalanced moment due to
all forces on either side of the section. Bending moment at any section is the algebraic sum of
the moments due to all forces acting on the beam on either right or left side of the section. The

effect of bending moment is to bend the element.



Sign convention:

The shear force and bending moment are vector quantities and as a matter of convenience are

assigned the following sign convention.

Shear force acting in the upward direction to the left hand side of the section and downward

direction to the right hand side of the section is considered to be positive & vice-versa.

=00 1E

Positive shear force Negative shear force

Fig 12

Bending moment is considered to be positive when it is acting in the clockwise direction on the
left hand side of the section (L.H.S) (or) when it is acting in the counter-clockwise direction on

the right hand side of the section (R.H.S) as the section & vice versa.

(+ ve Bending moment) (- ve Bending moment)
Sagging moment Hogging moment

Fig. 13

SHEAR FORCE AND BENDING MOMENT DIAGRAMS:

Graphical representation of variation of shear force along the length of the beam for any given
loading condition is known as shear force diagram (SFD). If x denotes the length of the beam,

then shear force ‘F is function of x, i.e. F(x).

Similarly, graphical representation of variation of bending moment along the length of the beam
for any given loading condition is known as bending moment diagram (BMD). If x denotes the

length of the beam, then bending moment is function of x, and is denoted as M(x).



Shear force diagram and bending moment diagram are helpful for further analysis and design of
beam.

SFD and BMD of a beam reveal the following important information at salient points in the
beam. These are maximum shear force, maximum bending moment, point of contralexture or

point of inflexion, etc.

RELATIONS BETWEEN LOAD, SHEAR FORCE AND BENDING MOMENT

Consider a beam AB carrying generalized loading as shown in the figure. Take an element of
infinitesimal length dx between section 1-1 and 2-2 at a distance of x from the left hand support
A. The free body diagram of the element is drawn with positive sense of the shear forces and

bending moments.

The intensity of loading over the length of the element may be taken as constant, i.e., w.

Considering equilibrium of the element,

Resolving the forces vertically, ZV =0

F=wdx+F+0F

O F=-wdx
_=-w
O x
- dF
In the limiting case, as 0 x — 0, o —w (1)
X

So, the rate of change of shear force is equal to the intensity or rate of loading.

Taking moments of the forces and couples about the section 2-2, ZM 2 =0

(8.x)°

M+ M+w =M+ Fd x

Neglecting small quantities of higher order, we have

SM

—=F
ox



M
In the limiting case as & x — 0, % =F )

The above equation shows that the rate of change of bending moment is equal to the shear force

at the section. Also bending moment would be maximum at a section where shear force is zero.
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(a) Loaded beam

1
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A | M+6M :
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Left part of beam :
2 Right part of beam
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(b) Free body diagram of two parts

M winitlength M+dM
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F F+6F
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(c) Enlarged view of element

Fig. 14

Evaluation of Shear Force and Bending Moment:

Thus analysis of beam for shear force and bending moment is carried out by the following

process.



1. Determine the reactions at the supports by considering the entire beam as a rigid body
and applying equations of equilibrium.

2. Take sections at different points on the beam near supports and load application points.

3. Apply equilibrium analyses on resulting free-bodies to determine internal shear forces
and bending moments.

4. Draw shear force and bending moment diagram.

5. Identify the maximum shear and bending-moment from plots of their distributions.

6. Find the position of point of contaflexure or point of inflexion.

Numerical

1. Draw the Shear force and bending moment diagram for a cantilever beam of length L

carrying a point load W at its free end.

Solution:

Evaluation of support reactions:

Considering the equilibrium of the beam and applying static equations of equilibrium,

Sum of'the vertical forces, z V=0,V,=w (M

Taking moment about A4, ZMA =0, WxL+M, =0
M, =—WL (counter - clockwise )

Calculation of Shear force and bending moments:

Considering from the right hand side B, as the origin, take a section 1-1 at a distance of x from B
between Band 4(0<x< L).

Shear force at 1-1, F, =W

Shear force at B,i.e.,x=0 F, =W

Shear force at 4, i.e,x=L, F, =W

Bending moment at 1-1, M, =-Wx

Bending moment at B, i.e,x=0,M, =0



Bending moment at A, i.e,x=L,M, =—WL

W W
+ve
(b) Shear Force Diagram
- ve
WL/2
(c) Bending Moment Diagram
Fig.

2. Draw the Shear force and bending moment diagram for a cantilever beam of length L

carrying uniformly distribute load of intensity w over the entire span.

Solution:

Evaluation of support reactions:

Considering the equilibrium of the beam and applying static equations of equilibrium,

Sum of the vertical forces, ZV =0,V, =wL

L
Taking moment about 4, » M, =0, Wil x 5 M =0

L .
M, =- w2 (counter - clockwise )

Calculation of Shear force and bending moments:



Considering from the right hand side B, as the origin, take a section 1-1 at a distance of x from B

between Band 4(0<x< L).
Shear force at 1-1, F, = wx
Shear force at B, i.e.,x=0 F, =0

Shear force at 4, i.e,x=L, F, =wL

A =wL
(a) Beam
wL
+ve
(b) Shear Force Diagram
-ve
"3
(c) Bending Moment Diagram

(x)
Bending moment at -1, M _=-wxx| 5 :—Lvﬁ
3

Bending moment at B, i.e,x=0,M, =0

. . wiL?
Bending moment at A, i.e,x =L, M , =— EN

3. Draw the Shear force and bending moment diagram for a cantilever beam of length L
carrying uniformly distribute load of intensity w per unit length from the fixed support to the

centre of the beam.



Solution:

Evaluation of support reactions:

Considering the equilibrium of the beam and applying static equations of equilibrium,

. wL
Sum of the vertical forces, Y.V =0, V, = )

Taking moment aboutA,ZM =0, wL 9 L CM =0

A 2 4 A
wiL?
M, = e (counter - clockwise )
2
wL”™
My= 3 @| W per unit run
¥

C
\4— L L2 —_:}
, _ wL
A= 2 |- L »’
WL i
A mnear
2 N
(b) Shear Force Diagram
- ve /’
\ Parabolic

8  (c) Bending Moment Diagram
Fig.
Calculation of Shear force and bending moments:

Shear force and bending moment at the free end B, Fg=0; Mg =0

Shear force and bending moment anywhere between B and C is zero since there is no load on the

beam in this portion when considered from right side.



I?Tow, consiﬁlering C as the origin, take a section 1-1 at a distance of x from C between C and 4
|OSxS |.
\ 2)

Shear force at 1-1, F, = wx

L L
Shear force at 4, ie,x=L, F =w = W

422
(x)  wx?

Bending moment at 1-1, My = —-wxx| _|=—
\2) 2

Bending moment at 4, i.e,x = E’ L=

4. Draw the Shear force and bending moment diagram for a cantilever beam of length L
carrying uniformly distribute load of intensity w per unit length from the free end up to a

distance of a.

Solution:

Evaluation of support reactions:

Considering the equilibrium of the beam and applying static equations of equilibrium,

Sum of the vertical forces, Z V=0,V,=wa
Taking moment about 4, M =0, wax (L - a) +M =0

. )

2
wa
M e 7(L - 25‘) (counter - clockwise )

Calculation of Shear force and bending moments:

Shear force and bending moment at the free end B, Fg =0; Mg =0
Now, considering B as the origin, take a section 1-1 at a distance of x from B between B and C

(OSxSa).

Shear force at 1-1, F, = wx



Shear force at B, i.e,x=0, F. =wx0=0

Shear force at C, i.e,x =a, F. = wa

. (x)  wx
Bending moment at 1-1, My, = —-wxx| _|=—
7)o 2
2
. , wa
Bending moment at C, i.e,x =a,M , = — EN

@ W per unit run

My 14

C
Q B

@ |<-X—>|

|-— X—>|

- .

(a) Beam

wa wa Linear

(b) Shear Force Diagram

waz \ Parabolic

(c) Bending Moment Diagram
Fig.
Now, take a section 2-2 at a distance of x from B between C and 4 (a <x< L).
Shear force at 2-2, F, = F. = wa

Shear force will remain same as wa from C to /1

Bending moment at 2-2, M = -waXx | x— |
. _



[ _a)

Bending moment at 4, i.e,x=L, M =-— _ar__va (2L - a)
X wal| L — | _
v 2) 2
5. A cantilever of 3.5 m long carries point loads of 15 kN, 15 kN and 7.5 kN at 1 m, I m and
1.5 m respectively from the fixed end. Draw the Shear force and bending moment diagram

for the beam.

Solution: Calculation of Shear force and bending moments:

Portion BD: At section 1-1 at a distance x from B between B and D (0 < x <1.5m)
Shear force at 1-1, F, =7.5kN (constant from B to just right of D)

Shear force at B, Fs = 7.5 kN
Shear force just right of D, FpL = 7.5 kN

A B
Im —>|<— 1m —.-|1—1.5 m—pl
(a) Beam
375kN 375kN
225kN
S T5EN
|
(b) SFD




Bending moment at 1-1, M, =-7.5x
Bending moment at B, i.e.,atx=0,M, =—7.5x0=0
Bending moment at D, i.e.,atx=1.5,M, =-7.5x1.5=11.25%kN—-m
Portion DC: At section 2-2 at a distance x from B between D and C (1.5< x < 2.5m)
Shear force at 2-2, F. =7.5+15 (constant from D to just right of C)
Shear force at D, Fp=22.5 kN
Shear force just right of C, FcL =22.5 kN
Bending moment at 2-2, M, = ~7.5x—15(x - 1.5)
=-22.5x+22.5
Bending moment at C, i.e.,at x=2.5, M, =—-22.5x2.5+22.5=-33.75kN —m
Portion CA: At section 3-3 at a distance x from B between C and 4 (2.5 <x< 3.5m)
Shear force at 3-3, F, =7.5+15+15 (constant from Cto A4)
Shear force at C, Fc =37.5 kN
Shear force at A, Fa=37.5 kN
Bending moment at 3-3, M, = -7.5x—15(x-1.5)-15(x - 2.5)
=-37.5x+60
Bending moment at 4, i.e.,at x =3.5m,M, =—-37.5x3.5+60=-71.25kN—m

6. A cantilever of 1.6 m long carries a uniformly distributed load of intensity 1.5 kN/m over the
entire span and a point load of 2.5 kN at the free end. Draw the Shear force and bending

moment diagram for the beam.

Solution:
Calculation of Shear force and bending moments:

Considering from the right hand side B, as the origin, take a section 1-1 at a distance of x from B

between B and 4 (0 < x <1.6m).
Shear force at 1-1, F, =2.5+1.5x
Shear force at B, i.e.,x=0,F; =2.5+1.5x0=2.5kN
Shear force at 4, i.e.,x=1.6m,F, =2.5+1.5x1.6 =4.9kN



x
Bending moment at 1-1, M = —2.5x — 1.5){_2)

= —2.5x—0.75x2
Bending moment at B, i.e.,x=0,M; =0

Bending moment at 4, i.e.,x=1.6,M , = —2.5x1.6 — 0.75x1.6>

=-592kN—m
25kN
1.5 kN/m |
o ¥
A 1'rB’.
lém -|
(a) Beam
49 kN Linear
25KkN
+ ve
(b) SFD
- Ve
Parabolic
392kN-m oy pMD
Fig.

7. A cantilever of 1.5 m long is loaded with a uniformly distributed load of intensity 2 AN/m and
a point load of 2.5 kN as shown in the figure. Draw the Shear force and bending moment

diagram for the cantilever.

Calculation of Shear force and bending moments:
Considering from the right hand side B, as the origin, take a section 1-1 at a distance of x from B

between B and D (0 < x <0.25m).

Shear force at 1-1, F, =2x



Shear force at B, i.e.,x=0,F; =2x0=0
Shear force just right of D, i.e.,x =0.25m,F, =2x0.25=0.5kN

Shear force at D, i.e.,x=0.25m,F, =0.5+2.5=3kN

X
Bending moment at 1-1, M = —2){_2) = —x2

Bending moment at D, i.e., x = 0.25, M, =—(0.25)> = ~0.0625kN —m

(b) SED

0.0625 kN_;\ Parabolic

Parabolic

4.0625 kN-m

Straight line




Now, take a section 2-2 at a distance of x from B between D and C(0.25 < x <1.25m).
Shear force at 1-1, F, =2x+2.5
Shear force at D, i.e.,x =0.25,F, =2x0.25+2.5=3kN

Shear force C, i.e.,.x =1.25m,F, =2x1.25+2.5=5kN
(x)

Bending moment at 1-1, M = —2x ij— 2.5(x - 0.25)
=—x2—-2.5x+0.625
Bending moment at C, i.e., x = 1.25, M, = —1.25* = 2.5x1.25+ 0.625
=—4.0625kN —m

8. Calculate the shear force and bending moment for the beam subjected to a concentrated load
of W as shown in the figure. Draw the shear force diagram (SFD) and bending moment

diagram (BMD).

Solution:
Evaluation of support reactions:

Considering the equilibrium of the beam and applying static equations of equilibrium,

X L
Taking moment about B, ZMB =0,y, L=Wx ,

vV =

w
S
Sum of'the vertical forces, ZV =0,V,+Vy=W

Hence, 5

Calculation of Shear force and bending moments:



Considering A as the origin, take a section 1-1 at a distance of x from 4 between 4 and C

(0<x<%).

Shear force at 1-1, F, =V, = %

w
Shear force at 4, i.e., x=0 FA = 5
. . . L w
Shear force just left of C, i.e., x=0 ie,x= ,F =
2 2
w
Bending moment at 1-1, M =V, **= ?x
Wx
Bending moment at 4, i.e., x =0, MA = - =0
. . L
Bending moment at C, i.e., x= , M _ Kx L_WwL
2 ¢ 2 2 4

+ve

- Ve

)

(b) Shear Force Diagram
WL /4

+ve

(c) Bendng Moment Diagram

Fig.



Take a section 2-2 at a distance of x from 4 between C and B (L <x< L\ .

|
\2 )

4 w
Shear force at2-2, I = ——-W=-_
(o’ W’
Shear forceat C' x = i F =
-~ o
L 2) 2
-w
Shear force at B, (x = L), F, =
Bending moment at 2-2, M =Wx— ( —L\
X — W|X 7|
2 L 2)
L
I
2 2
Wx WL
= -4+ —
2 2
Bending moment at B, i.e., x=L, M :—WI+WL:0

B

s
. . L L L L
BendingmomentatC,i.e., x= ,M =- Wl( %|+ W = (&
c — _ _
2 2\2) 2 4
9. Draw the Shear force and bending moment diagram for a simply supported beam of length L

carrying uniformly distribute load of intensity w per unit length over the entire span.

Solution:
Evaluation of support reactions:
The simply supported beam with uniformly distributed load over the entire span is symmetrically

loaded symmetric beam. Hence, reactions at both supports are equal.

Calculation of Shear force and bending moments:

In a symmetric beam, we need only to analyze half of the beam for shear force and bending
moment. The other half will just be the mirror-image of the first half.



wL
2
+ve
-ve
2
(b) Shear Force Diagram
8
/’_m
(c) Bending Moment Diagram

Fig.

Considering A as the origin, take a section 1-1 at a distance of x from 4 between 4 and C

(Ong%).

wL
Shear force at 1-1, V, =V, ~WX= 7— wx
. wl
Shear force at 4, i.e., x=0 F, = -
. wL L
Shear force at C,ie., F =__ —wx _ =0
C
2 2
. X wL X
Bending moment at 1-1, M =V, xx— foz - x— wxrjw
)
L
= ow



Bending moment at 4, i.e., x=0 M =0

JAP
wL( L) W(zj wL?  wl?
Bending momentat C, M = |- [-——~—=
¢ 202) 2 4 8
_ wl?
8

Bending moment equation is a quadratic in form, hence the bending moment diagram will be
parabolic between 4 and B.

Due to symmetry, the bending moment and shear force for the other half at respective point of
symmetry will be same as the first half 4B.

10. A simply supported beam shown in the figure carries two concentrated loads and a uniformly
distribute load. Analyze the beam for shear force and bending moment, and draw the SFD

and BMD.

Solution:
Evaluation of support reactions:

Considering the equilibrium of the beam and applying static equations of equilibrium,

Taking moment about B, > My =0, V, x8= 25x 6+ 15x 4 + 7.5x 4x 2
V,=33.75kN

Sum of the vertical forces, ZV: 0,33.75+V, =25+15+7.5x4

Hence, Vy=70-33.75=36.25kN

Calculation of Shear force and bending moments:

Considering A as the origin, take a section 1-1 at a distance of x from 4 between 4 and C
(O <x< 2).

Shear force at 1-1, F, =V, =33.75kN

Shear force at 4, i.e.,x=0 F, =33.75kN

Shear force just left of C, i.e.,x =2, F,. =33.75kN

Shear force at C, i.e.,x =2, F. =33.75-25=8.75kN

Bending moment at 1-1, M, =V, xx =33.75x



Bending moment at C, i.e.,x =2, M. =33.75x2=67.5kN—m

Take a section 2-2 at a distance of x from 4 between C and D (2 < x< 4).

Shear force at 2-2, F. =33.75-25=8.75kN
Shear force at C, i.e., x=2, F. =8.75kN
Shear force just left of D, i.e.,x =4, F,,, =8.75kN
Shear force at D, i.e.,.x=4, F,, =8.75-15=—-6.25kN
Bending moment at 2-2, M, = 33.75x - 25(x - 2)

M, =8.75x+50

Bending moment at C, i.e.,x=4, M, =8.75x4+ 50 =85kN —m

+ve |[8.75kN

6.25 kN Ve

Linear

(b) SED

36.25 kN

85 kN-m

Parabolic

(c) BMD

Fig.



Now, considering from the right side and taking B as the origin, take a section 3-3 at a distance
of x from B between B and D (0 <x <4).

Shear force at 3-3, F. =-36.25+7.5x

Shear force at B,i.e.,x=0 F, =36.25kN

Shear force just right of D, i.e., atx =4, F_. =-36.25+7.5x4 =—-6.25kN

Shear force at D, i.e.,x=4, F,=—6.25+15=8.75kN

=36.25x — Ex2 =36.25x — 3.75x>

Bending moment at 3-3, M . 5

Bending moment at D, i.e., x =4, M, =36.25x4—-3.75x4> =85kN —m

11. Draw the shear force and bending moment diagram for the overhanging beam shown in the

figure.

Solution:
Evaluation of support reactions:

Considering the equilibrium of the beam and applying static equations of equilibrium,
Taking moment about A4, ZMA =0, Vp x4 =20x5+50x2+20x2x1

V, = 60kN
Sum of the vertical forces, Z V=0,V,+60=20x2+50+20

Hence, V,=110—-60=50kN

Calculation of Shear force and bending moments:
Considering 4 as the origin, take a section 1-1 at a distance of x from A between 4 and C
(0 <x< 2).
Shear force at 1-1, F, = 50— 20x
Shear force at 4, 1.e.,x=0 F, =50kN
Shear force justleftof C, i.e.,x=2,F,,=50-20x2
F,. =10kN

Shear force at C, i.e.,x=2, F. =10—-50=—-40kN



2
Bending moment at 1-1, A7 =y, xx—20><x?

= 50x — 10x?
Bending moment at C, i.e.,x=2, M, =50x2—-10x2* = 60kN —m

50 kN 20kN

50 kN
20 kN
+ve 10 kKN +ve
- Ve
40kN
(b) SED
60 kN-m

Point of contraflexure 20 kKN-m
(c) BMD
Fig.
Now, considering from the right side and taking B as the origin, take a section 2-2 at a distance

of x from B between B and D (0 <x < 4).
Shear force at 2-2, F. = 20kN

Shear force at B, 1.e.,x=0 F, =20kN



Shear force just right of D, i.e., atx =1, F, = 20kN
Shear force at D, i.e.,x=1, F, =20—60=—40kN
Bending moment at 2-2, M = -20x

Bending moment at D, i.e.,x=1, M, =0

Bending moment at D, i.e.,M, = -20x1=-20kN — m
Take a section 3-3 at a distance of x from B between D and C (1< x <3).
Shear force at 3-3, F. =20—-60=—-40kN
Shear force at D, i.e.,x=1, F, =—40kN
Bending moment at 3-3, M, =—20x+60(x—1)
=40x— 60
Bending moment at C, i.e., x=3, M, =40x3-60=60kN—m
It is observed that bending moment changes sign between D and C. So, point of

contraflexure exists between D and C.

Equating bending moment equation to zero, we get
40x—-60=0
x=15m

Point of contraflexure:

A point of contraflexure is a point where the curvature of the beam changes signs. It is
sometimes referred to as a point of inflexion. In other words, point of contraflexure is a point
where bending moment changes its sign from positive to negative or from negative to positive

through zero. This means, bending moment is zero at point of contraflexure.



Columns and Struts
. Any member subjected to axial compressive load is called a column or Strut.

. A vertical member subjected to axial compressive load — COLUMN (Eg: Pillars
of a building)

. An inclined member subjected to axial compressive load - STRUT
. A strut may also be a horizontal member

. Load carrying capacity of a compression member depends not only on its cross
sectional area, but also on its length and the manner in which the ends of a
column are held.

. Equilibrium of a column — Stable, Unstable, Neutral.

. Critical or Crippling or Buckling load — Load at which buckling starts

. Column is said to have developed an elastic instability.

Classification of Columns

. According to nature of failure — short, medium and long columns

. 1. Short column — whose length is so related to its c/s area that failure
occurs mainly due to direct compressive stress only and the role of
bending stress is negligible

. 2. Medium Column - whose length is so related to its c/s area that failure
occurs by a combination of direct compressive stress and bending stress

. 3. Long Column -_whose length is so related to its c/s area that failure
occurs mainly due to bending stress and the role of direct compressive
stress 1s negligible




Euler’s Theory

. Columns and struts which fail by buckling may be analyzed by Euler’s
theory

. Assumptions made

the column is initially straight

the cross-section is uniform throughout

the line of thrust coincides exactly with the axis of the column
the material is homogeneous and isotropic

the shortening of column due to axial compression is negligible.

Case (1) Both Ends Hinged
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The equation can be written as oot gry=0 wieE: o= =
; B i

The solution is y = 4 sin & x + B cos « x

Atx=0,y=0, .. B=0
atx=/,y=0and thus 4 sina/=0

If4=0,y is zero for all values of load and there is no bending.

smal=0 or al=m (considering the least value)

or ax=a/1
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Euler crippling load, P, = «?EI =

Case (ii) One end fixed other free
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The solution1s ¥y = Asinax + Bcos ox + EIO(Z

= Asinox + Bcosax + a

x=0,y=0, & B=-a;

or Aacosax—Basinax=0 or A=0

y= —acos ax + a=a(l —cos ax)



At x=Ly=a, .. a=a(l —cos al)

or cosal=0 or ol =12t— (considering the least value)

a=1/2l]
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~. Euler crippling load, P, = o¢*EIl = 754[2

Case (iii) Fixed at both ends

EI =—Py+M




The solution is y = A sin atx + B cos ox +
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or Aacosax—Basinax=0 or A=0
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At x=1Ly=0, .. Oz%(l—cosal)or cosal=1

or al=27 (considering the least value)
or a=2m/l

>3
<. Euler crippling load, P, = 2 EI = ——477;2EI '



Case (iv) One end fixed, other hinged
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where o2 =—
EIl

R( — x)

Thesolutionis y = A sin &x + B cos ax +
Y Elo?
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=Asinocx+Bcosax+;(l—x)
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At x=1,y=0, .. 0=—R—sinal—-&cosal
Po P

or tan al = al

al=4.49 rad (considering the least value)
a=449/1
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Equivalent Length (/ )
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Euler’s load can be expressed as F, = /2

where /2 is referred as equivalent lengtlh of the

column which takes into account the type of fixing
of the ends.

The equivalent lengths for different types of end conditions are

(i) both ends hinged, /=1
(if) one end fixed and the other free, /, =2/

(iii) both ends fixed, [ =1/2
(iv) one end fixed, other hinged, | = IN2
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Limitations of Euler’s Formula

Assumption — Struts are initially perfectly straight and the load is exactly
axial.

There is always some eccentricity and initial curvature present.

In practice a strut suffers a deflection before the Crippling load.

Critical stress (Gc) —average stress over the cross section
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. l/k is known as Slenderness Ratio
Slenderness Ratio

Slenderness ratio is the ratio of the length of a column and the radius of gyration of its cross section

Slenderness Ratio = //k

The Radius of Gyration ky of an Area (A) about an axis (x) is defined as:



Rankine’s Formula OR Rankine-Gorden Formula

Euler’s formula is applicable to long columns only for which //k ratio is
larger than a particular value.

Also doesn’t take in to account the direct
compressive stress.

Thus for columns of medium length it doesn’t provide
accurate results.

Rankine forwarded an empirical relation
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where P = Rankine’s crippling load
&, = ultimate load for a strut = o, - 4, constant for a material

P, = Eulerial load for a strut = w2 EI/P?

o For short columns, P, is very large and therefore 1/P, is small in comparison to 1/P,.. Thus the crippling
load P is practically equal to P,

o For long columns, P, is very small and therefore 1/P, is quite large in comparison to 1/P,. Thus the
crippling load P is practically equal to P,
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where o, is the crushing stress

P =

o 5
a is the Rankine’s constant (o J7*E)
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£ a(_) 4 is the Rankine’s constant (o /mE)

A Factor of Safety may be considered for the value of 6, in the above formula

Rankine’s formula for columns with other end conditions






