

PNS SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

Branch: Electrical Engg.	Semester: 5 TH	Name of the Lecturer: Adity Narayan Jena
Subject: DEM	Classes Allotted in a Week: 4	Duration of Semester: 14.07.2025 - 15.11.2025
Week	Class Day	Theory / Practical Topic
1st	1	1.BASIC OF DIGITAL ELECTRONICS INTRODUCTION TO DIGITAL ELECTRONICS
	2	NUMBER SYSTEM(BINARY,OCTAL,DECIMAL,HEXADECIMAL)
	3	CONVERSION OF BINARY/OCTAL/HEXADECIMAL NUMBER SYSTEM INTO DECIMAL NUMBER SYSTEM
	4	CONVERSION OF DECIMAL NUMBER SYSTEM INTO BINARY/OCTAL/HEXADECIMAL NUMBER SYSTEM
2nd	1	CONVERSION OF BINARY TO OCTAL AND OCTAL TO BINARY,BINARY TO HEXADECIMAL AND HEXADECIMAL TO BINARY NUMBER SYSTEM,CONVERSION OF OCTAL INTO HEXADECIMAL AND HEXADECIMAL INTO OCTAL NUMBER SYSTEM
	2	BINARY ARITHMATIC (ADDITION, SUBTRACTION, MULTIPLICATION, DIVISION)
	3	1'S COMPLEMENT AND 2'S COMPLEMENT METHOD, SUBTRACTION USING 2'S COMPLEMENT
	4	BINARY CODES(BCD CODE, XS-3 CODE, GRAY CODE)
3rd	1	LOGIC GATES(AND,OR,NOT,NAND,NOR,XOR,XNOR) AND TRUTH TABLE
	2	UNIVERSAL GATE AND IMPLEMENTATION USING NAND AND NOR GATES
	3	DEMORGANS THEOREM AND ITS PROOF
	4	BOOLEAN ALGEBRA, SIMPLIFICATION OF LOGIC EXPRESSION USING BOOLEAN ALGEBRA
4th	1	BOOLEAN EXPRESSION(SOP,POS)
	2	2-VARIABLE,3-VARIABLE,4-VARIABLE K-MAP
	3	SIMPLIFICATION OF SOP AND POS EXPRESSION USING K-MAP
	4	DON'T CARE CONDITION
5th	1	2.COMBINATIONAL LOGIC CIRCUIT CONCEPT OF COMBINATIONAL LOGIC CIRCUIT, HALF ADDER CIRCUIT, WORKING
	2	HALF ADDER USING NAND GATES ONLY AND NOR GATES ONLY, FULL ADDER WORKING, LOGIC DIAGRAM
	3	REALIZE FULL ADDER USING TWO HALF-ADDER AND AN OR-GATE WITH TRUTH TABLE, HALF SUBTRACTOR WORKING AND ITS LOGIC DIGRAM
	4	FULL SUBTRACTOR WORKING, LOGIC DIAGRAM
6th	1	REVISION
	2	2:4 DECODER, 3:8 DECODER WORKING, LOGIC DIAGRAM
	3	4:2 ENCODER, OCTAL TO BINARY ENCODER WORKING, BINARY-DECIMAL ENCODER WORKING, LOGIC DIAGRAM
	4	MUX, 4:1 MUX WORKING, LOGIC DIAGRAM
7th	1	3SEQUENTIAL LOGIC CIRCUIT DMUX, 1:4 DMUX WORKING, LOGIC DIAGRAM
	2	1-BIT COMPARATOR AND 2-BIT COMPARATOR WORKING, TRUTH TABLE, LOGIC DIAGRAM
	3	SLC, TYPES OF SLC, DIFFERENCE BETWEEN CLC AND SLC, CONCEPT OF CLOCK AND TRIGGERING
	4	FLIP-FLOPS, NOR BASED SR-FF TRUTH TABLE AND WORKING
8th	1	NAND BASED SR-FF WORKING, CLOCKED NAND BASED SR-FF WORKING
	2	WORKING OF CLOCKED D-FF AND JK-FF
8th	3	RACE-AROUND CONDITION, WORKING OF MASTER-SLAVE JK-FF
	4	WORKING OF T FLIP-FLOP, APPLICATIONS OF FLIP-FLOPS
9th	1	COUNTERS, TYPES OF COUNTERS, DIFFERENCE BETWEEN ASYNCHRONOUS AND SYNCHRONOUS COUNTER, MODULUS OF A COUNTER
	2	4-BIT ASYNCHRONOUS COUNTER, TIMING DIAGRAM

9th	3	REGISTERS AND ITS TYPES, WORKING OF SISO REGISTER
	4	WORKING OF SIPO AND PISO REGISTER
10th	1	WORKING OF PIPO REGISTER
	2	INTRODUCTION TO MICROPROCESSOR AND MICROCOMPUTER
	3	PIN DIAGRAM AND DESCRIPTION OF 8085 MICROPROCESSOR
	4	PIN DESCRIPTION OF 8085 MICROPROCESSOR
11th	1	REVISION
	2	BLOCK DIAGRAM/ARCHITECTURE OF 8085 MICROPROCESSOR
	3	ARCHITECTURE OF 8085
	4	REGISTERS OF 8085, STACK, STACK POINTER, STACK TOP
12th	1	4.8085 MICROPROCESSOR OPCODES, OPERANDS, INSTRUCTION TYPES ACCORDING TO BYTE SIZE (1-BYTE, 2-BYTE, 3-BYTE) INSTRUCTIONS WITH EXAMPLES
	2	INSTRUCTION SET TYPES ACCORDING TO OPERATION PERFORMED BY MICROPROCESSOR (DATA TRANSFER, ARITHMETIC, LOGICAL, BRANCH, STACK, MACHINE CONTROL, I/O CONTROL)
	3	ADDRESSING MODES OF 8085 MICROPROCESSOR
	4	INSTRUCTION CYCLE, FETCH CYCLE, EXECUTION CYCLE, MACHINE CYCLE AND T-STATE
13th	1	TIMING DIAGRAM OF OPCODE FETCH CYCLE, MEMORY READ AND MEMORY WRITE CYCLE
	2	TIMING DIAGRAM OF I/O READ, I/O WRITE, MOV, MVI INSTRUCTION
	3	COUNTER AND TIME DELAY
	4	SIMPLE ASSEMBLY LANGUAGE PROGRAMMING OF 8085 MICROPROCESSOR
14th	1	5. INTERFACING & SUPPORT CHIPS BASIC CONCEPT OF INTERFACING, MEMORY MAPPING AND I/O MAPPING
	2	8255PPI PIN DESCRIPTION
	3	8255PPI FUNCTIONAL BLOCK DIAGRAM
	4	MODES OF 8255
15th	1	APPLICATION USING 8255 PPI-SEVEN SEGMENT LED DISPLAY
	2	SQUARE WAVE GENERATOR
	3	TRAFFIC LIGHT CONTROLLER
	4	REVISION

**Signature of the
Lecturer**

**Signature of the
H.O.D.**

**Signature of the
Principal**